本課程概要說明解碼器與編碼器的架構,這種強大且常見的機器學習架構適用於序列對序列的任務,例如機器翻譯、文字摘要和回答問題。您將認識編碼器與解碼器架構的主要元件,並瞭解如何訓練及提供這些模型。在對應的研究室逐步操作說明中,您將學習如何從頭開始使用 TensorFlow 寫程式,導入簡單的編碼器與解碼器架構來產生詩詞。
本課程將介紹注意力機制,說明這項強大技術如何讓類神經網路專注於輸入序列的特定部分。此外,也將解釋注意力的運作方式,以及如何使用注意力來提高各種機器學習任務的成效,包括機器翻譯、文字摘要和回答問題。
這個入門微學習課程主要說明生成式 AI 的定義和使用方式,以及此 AI 與傳統機器學習方法的差異。本課程也會介紹各項 Google 工具,協助您開發自己的生成式 AI 應用程式。
大型語言模型 (LLM) 誕生之後,生成式 AI 應用程式帶來的嶄新使用者體驗,可說是幾乎前所未有。身為應用程式開發人員,您要如何在 Google Cloud,運用生成式 AI 建立出色的互動式應用程式? 本課程將帶您瞭解生成式 AI 應用程式,以及如何使用提示設計和檢索增強生成 (RAG),透過 LLM 建構強大的應用程式。我們也會介紹可用於正式環境的生成式 AI 應用程式架構。您將建構採用 LLM 和 RAG 的對話應用程式。