本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。
生成式 AI 应用可以提供大语言模型 (LLM) 问世前几乎不可能实现的全新用户体验。作为应用开发者,您要如何利用生成式 AI 在 Google Cloud 上构建更具吸引力且功能强大的应用? 在本课程中,您将了解生成式 AI 应用,以及如何利用提示设计和检索增强生成 (RAG) 技术,构建使用 LLM 的强大应用。您将了解可用于生产用途且适合生成式 AI 应用的架构,并构建一个基于 LLM 和 RAG 的聊天应用。