Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
Mit auf generativer KI basierenden Anwendungen, kurz GenAI-Anwendungen, werden Nutzerinteraktionen möglich, die es vor Large Language Models (LLMs) kaum gab. Wie können Sie als Anwendungsentwickler mit generativer KI interaktive, leistungsstarke Anwendungen in Google Cloud erstellen? In diesem Kurs lernen Sie etwas über Anwendungen, die auf generativer KI basieren, und erfahren, wie Sie Prompt-Design und Retrieval-Augmented Generation (RAG) nutzen können, um mit LLMs leistungsstarke Anwendungen zu entwickeln. Wir stellen Ihnen eine produktionsreife Architektur für auf generativer KI basierende Anwendungen vor und Sie erstellen eine Chat-Anwendung auf der Basis von LLMs und RAG.