加入 登录

在 Google Cloud 控制台中运用您的技能

Sean Vuong

成为会员时间:2022

青铜联赛

1000 积分
Serverless Data Processing with Dataflow: Foundations Earned Jun 9, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Jun 2, 2023 EDT
Building Resilient Streaming Analytics Systems on Google Cloud Earned May 25, 2023 EDT
Building Batch Data Pipelines on Google Cloud Earned May 22, 2023 EDT
Modernizing Data Lakes and Data Warehouses with Google Cloud Earned Apr 17, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Apr 13, 2023 EDT
建立 Google Cloud 網路 Earned Apr 8, 2023 EDT
雲端架構:設計、實作與管理 Earned Apr 5, 2023 EDT
Logging and Monitoring in Google Cloud Earned Feb 21, 2023 EST
開始使用 Google Kubernetes Engine Earned Feb 13, 2023 EST
可靠的 Google Cloud 基礎架構:設計與程序 Earned Feb 8, 2023 EST
彈性的 Google Cloud 基礎架構:資源調度與自動化 Earned Feb 3, 2023 EST
重要的 Google Cloud 基礎架構:核心服務 Earned Feb 1, 2023 EST
重要的 Google Cloud 基礎架構:基本概念 Earned Jan 29, 2023 EST
Google Cloud 基礎知識:核心基礎架構 Earned Jan 24, 2023 EST

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud. Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Dataflow, and how to store processed records to BigQuery or Bigtable for analysis. Learners get hands-on experience building streaming data pipeline components on Google Cloud by using QwikLabs.

了解详情

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

了解详情

The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. This is the first course of the Data Engineering on Google Cloud series. After completing this course, enroll in the Building Batch Data Pipelines on Google Cloud course.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情

完成 建立 Google Cloud 網路 課程即可獲得技能徽章。這個課程將說明 部署及監控應用程式的多種方法,包括查看 IAM 角色及新增/移除 專案存取權、建立虛擬私有雲網路、部署及監控 Compute Engine VM、編寫 SQL 查詢、在 Compute Engine 部署及監控 VM,以及 使用 Kubernetes 透過多種方法部署應用程式。 「技能徽章」是 Google Cloud 核發的獨家數位徽章,用於肯定 您對 Google Cloud 產品和服務的精通程度,代表您已通過測驗, 能在互動式實作環境中應用相關知識。完成這個技能徽章課程和 結業評量挑戰研究室,即可取得技能徽章並 與親友分享。

了解详情

完成 雲端架構:設計、實作與管理 課程即可獲得 技能徽章,證明您具備下列技能: 使用 Apache 網路伺服器部署可公開存取的網站、使用開機指令碼設定 Compute Engine VM、 使用 Windows 防禦主機和防火牆規則設定安全的 RDP、建構 Docker 映像檔並部署至 Kubernetes 叢集,然後進行更新,以及建立 Cloud SQL 執行個體並匯入 MySQL 資料庫。 這個技能徽章課程是絕佳的 資源,可讓您瞭解Google Cloud 認證專業雲端架構師認證測驗涵蓋的主題。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可獲得技能徽章 並與親友分享。

了解详情

This course teaches participants techniques for monitoring and improving infrastructure and application performance in Google Cloud. Using a combination of presentations, demos, hands-on labs, and real-world case studies, attendees gain experience with full-stack monitoring, real-time log management and analysis, debugging code in production, tracing application performance bottlenecks, and profiling CPU and memory usage.

了解详情

歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。

了解详情

這堂課程可讓參加人員瞭解如何使用確實有效的設計模式,在 Google Cloud 中打造相當可靠且效率卓越的解決方案。這堂課程接續了「設定 Google Compute Engine 架構」或「設定 Google Kubernetes Engine 架構」課程的內容,並假設參加人員曾實際運用上述任一課程涵蓋的技術。這堂課程結合了簡報、設計活動和實作研究室,可讓參加人員瞭解如何定義業務和技術需求,並在兩者之間取得平衡,設計出相當可靠、可用性高、安全又符合成本效益的 Google Cloud 部署項目。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務。這堂課結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,包括安全地建立互連網路、負載平衡、自動調度資源、基礎架構自動化,以及代管服務。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,並將重點放在 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、系統和應用程式服務等基礎架構元件。另外,這堂課也會介紹如何部署實用的解決方案,包括客戶提供的加密金鑰、安全性和存取權管理機制、配額與帳單,以及資源監控功能。

了解详情

這堂隨選密集課程會向參加人員說明 Google Cloud 提供的全方位彈性基礎架構和平台服務,尤其側重於 Compute Engine。這堂課程結合了視訊講座、示範和實作研究室,可讓參加人員探索及部署解決方案元素,例如網路、虛擬機器和應用程式服務等基礎架構元件。您會瞭解如何透過控制台和 Cloud Shell 使用 Google Cloud。另外,您也能瞭解雲端架構師的職責、基礎架構設計方法,以及具備虛擬私有雲 (VPC)、專案、網路、子網路、IP 位址、路徑和防火牆規則的虛擬網路設定。

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情