George Zoto
Member since 2018
Diamond League
15330 points
Member since 2018
This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.
This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.
This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
This course introduces the AI and machine learning (ML) offerings on Google Cloud that build both predictive and generative AI projects. It explores the technologies, products, and tools available throughout the data-to-AI life cycle, encompassing AI foundations, development, and solutions. It aims to help data scientists, AI developers, and ML engineers enhance their skills and knowledge through engaging learning experiences and practical hands-on exercises.
Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!
Security is an uncompromising feature of Google Cloud services, and Google Cloud has developed specific tools for ensuring safety and identity across your projects. In this fundamental-level quest, you will get hands-on practice with Google Cloud’s Identity and Access Management (IAM) service, which is the go-to for managing user and virtual machine accounts. You will get experience with network security by provisioning VPCs and VPNs, and learn what tools are available for security threat and data loss protections.
If you are a novice cloud developer looking for hands-on practice beyond Google Cloud Essentials, this course is for you. You will get practical experience through labs that dive into Cloud Storage and other key application services like Monitoring and Cloud Functions. You will develop valuable skills that are applicable to any Google Cloud initiative. 1-minute videos walk you through key concepts for these labs.
ביצוע אופטימיזציה לעלויות של Google Cloud תיאור: זו המשימה השנייה מתוך שתיים בנושא יסודות החיוב וניהול העלויות ב-Google Cloud. המשימה הזו מתאימה במיוחד לבעלי תפקידים הקשורים ל-IT או לפיננסים, שאחראים לביצוע האופטימיזציה של תשתית הענן בארגון. במהלך המשימה תלמדו כמה דרכים לשליטה ולביצוע אופטימיזציה בעלויות של Google Cloud, ביניהן הגדרת תקציבים והתראות, ניהול של מגבלות מכסה וניצול של הנחות תמורת התחייבות לשימוש. בשיעורים המעשיים תתנסו בכל מיני כלים שיעזרו לכם לשלוט בעלויות ב-Google Cloud, לבצע אופטימיזציה שלהן או לעודד את צוותי הטכנולוגיה להחיל את השיטות המומלצות לאופטימיזציה של העלויות. מטרות: להסביר על הדרישות המקדימות בתחום התפעול לצורך אופטימיזציה של העלויות בענן. להבדיל בין תקציבים למכסות. להגדיר תקציבים והתראות לסף החזוי ולסף בפועל לקבלת תשלום. להגדיר אמצעי בקרה על עלויות באמצעות מכסה. לנתח את ההנחות תמורת התחייבות לשימוש. להשתמש בשיטות מתקדמות לשליטה בעלויות ולאופטימיזציה שלהן. קהל: כל מי שמנהל את ההוצאות ב-Google Cloud בכל תפקיד בחברה. התפקידים שנכללים: פיננסים ו-IT, מנהלי רכש, מנ…
המשמעות של העלויות ב-Google Cloud תיאור: המשימה הזו מתאימה במיוחד לבעלי תפקידים בתחומי הטכנולוגיה או הפיננסים, שאחראים לניהול של העלויות ב-Google Cloud. תלמדו איך להגדיר חשבון חיוב, איך לארגן משאבים ואיך לנהל הרשאות גישה לחיוב. בשיעורים המעשיים האלה תלמדו איך להציג את החשבונית, לעקוב אחר העלויות ב-Google Cloud בעזרת דוחות חיוב, לנתח את נתוני החיוב באמצעות BigQuery או Google Sheets וליצור מרכזי בקרה לחיוב בהתאמה אישית באמצעות Data Studio. מטרות: לתכנן ניהול יעיל של העלויות בענן על ידי הגדרת הצוותים והכלים והחלת שיטות מומלצות לפיקוח פיננסי. להגדיר חשבונות חיוב של Google Cloud ולארגן את המשאבים לניהול עלויות. להיעזר בדוחות החיוב כדי לגלות מהן המגמות הנוכחיות של העלויות ואת העלויות החזויות. לייצא את נתוני החיוב אל Google Sheets או BigQuery ולבדוק אותם. להציג את נתוני החיוב באופן חזותי באמצעות דוחות חיוב ולבנות מרכזי בקרה מותאמים אישית באמצעות Data Studio. קהל: כל מי שמנהל את ההוצאות ב-Google Cloud בכל תפקיד בחברה. התפקידים שנכללים: פיננסים ו-IT, מנהלי רכש, מנהלי כספים, סמנכ"ל תפעול, מנהלי …
Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Associate Cloud Engineer Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.
When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.
Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
It's no secret that machine learning is one of the fastest growing fields in tech, and Google Cloud has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning APIs by taking labs like Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API. Looking for a hands-on challenge lab to demonstrate your skills and validate your knowledge? Enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
It’s no secret that machine learning is one of the fastest growing fields in tech, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this introductory course, you will get hands-on practice with machine learning as it applies to language processing by taking labs that will enable you to extract entities from text, and perform sentiment and syntactic analysis as well as use the Speech to Text API for transcription.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Big data, machine learning, and artificial intelligence are today’s hot computing topics, but these fields are quite specialized and introductory material is hard to come by. Fortunately, Google Cloud provides user-friendly services in these areas, and with this introductory-level quest, so you can take your first steps with tools like Big Query, Cloud Speech API and Video Intelligence. Want extra help? 1-minute videos walk you through key concepts for each lab.
Welcome, gamers! Cloud Hero is played around the world, in person and online. Today, you have the opportunity to become one of the Cloud Heroes! Today's game is all about Big Data and Machine Learning. You will compete to see who can finish the game with the most points. Speed is important, and so is accuracy! Start taking the game labs to score points. Earn the most points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with the lab to get the maximum points. You can take each lab up to 5 times. Winners, collect your prizes at the front of the room!
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.