Mustapha Hanani
Member since 2021
Silver League
5002 points
Member since 2021
This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.
Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.
Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma. Beceri rozeti, Google Cloud ürün ve hizmetlerindeki uzmanlık düzeyiniz karşılığında Google Cloud tarafından verilen özel bir dijital rozettir. Bilgilerinizi, etkileşimli ve uygulamalı bir ortamda kullanma becerinizi test eder. Ağınızla paylaşabileceğiniz bir beceri rozeti kazanmak için bu beceri rozeti kursunu ve son değerlendirme niteliğindeki yarışma laboratuvarını tamamlayın.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
Giriş düzeyindeki BigQuery Verilerinden Analiz Elde Etme beceri rozetini alarak şu konulardaki becerilerinizi gösterin: SQL sorguları yazma, herkese açık tabloları sorgulama, örnek verileri BigQuery'ye yükleme, BigQuery'deki sorgu doğrulayıcı ile yaygın söz dizimi sorunlarını giderme ve BigQuery verilerine bağlanarak Looker Studio'da rapor oluşturma.