arrow_back

Build an application to send Chat Prompts using the Gemini model

Accedi Partecipa
Accedi a oltre 700 lab e corsi

Build an application to send Chat Prompts using the Gemini model

Lab 15 minuti universal_currency_alt Nessun costo show_chart Introduttivi
info Questo lab potrebbe incorporare strumenti di AI a supporto del tuo apprendimento.
Accedi a oltre 700 lab e corsi

Google Cloud self-paced labs logo

Overview

  • Labs are timed and cannot be paused. The timer starts when you click Start Lab.
  • The included cloud terminal is preconfigured with the gcloud SDK.
  • Use the terminal to execute commands and then click Check my progress to verify your work.

Objective

Generative AI on Vertex AI (also known as genAI or gen AI) gives you access to Google's large generative AI models so you can test, tune, and deploy them for use in your AI-powered applications. In this lab, you will:

  • Connect to Vertex AI (Google Cloud AI platform): Learn how to establish a connection to Google's AI services using the Vertex AI SDK.
  • Load a pre-trained generative AI model -Gemini: Discover how to use a powerful, pre-trained AI model without building one from scratch.
  • Send text to the AI model: Understand how to provide input for the AI to process.
  • Extract chat responses from the AI: Learn how to handle and interpret the chat responses generated by the AI model.
  • Understand the basics of building AI applications: Gain insights into the core concepts of integrating AI into software projects.

Working with Generative AI

After starting the lab, you will get a split pane view consisting of the Code Editor on the left side and the lab instructions on the right side. Follow these steps to interact with the Generative AI APIs using Vertex AI Python SDK.

Chat responses without using stream:

Streaming involves receiving responses to prompts as they are generated. That is, as soon as the model generates output tokens, the output tokens are sent. A non-streaming response to prompts is sent only after all of the output tokens are generated.

First we'll explore the chat responses without using stream.

Create a new file to get the chat responses without using stream:

  1. Click File > New File to open a new file within the Code Editor.
  2. Copy and paste the provided code snippet into your file.
from google import genai from google.genai.types import HttpOptions, ModelContent, Part, UserContent import logging from google.cloud import logging as gcp_logging # ------ Below cloud logging code is for Qwiklab's internal use, do not edit/remove it. -------- # Initialize GCP logging gcp_logging_client = gcp_logging.Client() gcp_logging_client.setup_logging() client = genai.Client( vertexai=True, project='{{{ project_0.project_id | "project-id" }}}', location='{{{ project_0.default_region | "REGION" }}}', http_options=HttpOptions(api_version="v1") ) chat = client.chats.create( model="gemini-2.0-flash-001", history=[ UserContent(parts=[Part(text="Hello")]), ModelContent( parts=[Part(text="Great to meet you. What would you like to know?")], ), ], ) response = chat.send_message("What are all the colors in a rainbow?") print(response.text) response = chat.send_message("Why does it appear when it rains?") print(response.text)
  1. Click File > Save, enter SendChatwithoutStream.py for the Name field and click Save.

  2. Execute the Python file by running the below command inside the terminal within the Code Editor pane to view the output.

/usr/bin/python3 /SendChatwithoutStream.py

Code Explanation

  • The code snippet is loading a pre-trained AI model called Gemini (gemini-2.0-flash-001) on Vertex AI.
  • The code calls the send_message method of the loaded Gemini model.
  • The code uses Gemini's ability to chat. It uses the text provided in the prompt to chat.

Chat responses with using stream:

Now we'll explore the chat responses using stream.

Create a new file to get the chat responses with using stream:

  1. Click File > New File to open a new file within the Code Editor.
  2. Copy and paste the provided code snippet into your file.
from google import genai from google.genai.types import HttpOptions import logging from google.cloud import logging as gcp_logging # ------ Below cloud logging code is for Qwiklab's internal use, do not edit/remove it. -------- # Initialize GCP logging gcp_logging_client = gcp_logging.Client() gcp_logging_client.setup_logging() client = genai.Client( vertexai=True, project='{{{ project_0.project_id | "project-id" }}}', location='{{{ project_0.default_region | "REGION" }}}', http_options=HttpOptions(api_version="v1") ) chat = client.chats.create(model="gemini-2.0-flash-001") response_text = "" for chunk in chat.send_message_stream("What are all the colors in a rainbow?"): print(chunk.text, end="") response_text += chunk.text
  1. Click File > Save, enter SendChatwithStream.py for the Name field and click Save.

  2. Execute the Python file by running the below command inside the terminal within the Code Editor pane to view the output.

/usr/bin/python3 /SendChatwithStream.py

Code Explanation

  • The code snippet is loading a pre-trained AI model called Gemini (gemini-2.0-flash-001) on Vertex AI.
  • The code calls the send_message_stream method of the loaded Gemini model.
  • The code uses Gemini's ability to understand prompts and have a stateful chat conversation.

Try it yourself! Experiment with different prompts to explore Gemini's capabilities.

Click Check my progress to verify the objective.

Send the text prompt requests to Gen AI and receive a chat response

Congratulations!

You have completed the lab! Congratulations!!

Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

Prima di iniziare

  1. I lab creano un progetto e risorse Google Cloud per un periodo di tempo prestabilito
  2. I lab hanno un limite di tempo e non possono essere messi in pausa. Se termini il lab, dovrai ricominciare dall'inizio.
  3. In alto a sinistra dello schermo, fai clic su Inizia il lab per iniziare

Utilizza la navigazione privata

  1. Copia il nome utente e la password forniti per il lab
  2. Fai clic su Apri console in modalità privata

Accedi alla console

  1. Accedi utilizzando le tue credenziali del lab. L'utilizzo di altre credenziali potrebbe causare errori oppure l'addebito di costi.
  2. Accetta i termini e salta la pagina di ripristino delle risorse
  3. Non fare clic su Termina lab a meno che tu non abbia terminato il lab o non voglia riavviarlo, perché il tuo lavoro verrà eliminato e il progetto verrà rimosso

Questi contenuti non sono al momento disponibili

Ti invieremo una notifica via email quando sarà disponibile

Bene.

Ti contatteremo via email non appena sarà disponibile

Un lab alla volta

Conferma per terminare tutti i lab esistenti e iniziare questo

Utilizza la navigazione privata per eseguire il lab

Utilizza una finestra del browser in incognito o privata per eseguire questo lab. In questo modo eviterai eventuali conflitti tra il tuo account personale e l'account Studente, che potrebbero causare addebiti aggiuntivi sul tuo account personale.