arrow_back

Build an AI Image Recognition app using Gemini on Vertex AI

登录 加入
访问 700 多个实验和课程

Build an AI Image Recognition app using Gemini on Vertex AI

实验 15 分钟 universal_currency_alt 免费 show_chart 入门级
info 此实验可能会提供 AI 工具来支持您学习。
访问 700 多个实验和课程

Google Cloud self-paced labs logo

Overview

  • Labs are timed and cannot be paused. The timer starts when you click Start Lab.
  • The included cloud terminal is preconfigured with the gcloud SDK.
  • Use the terminal to execute commands and then click Check my progress to verify your work.

Objective

Generative AI on Vertex AI (also known as genAI or gen AI) gives you access to Google's large generative AI models so you can test, tune, and deploy them for use in your AI-powered applications. In this lab, you will:

  • Connect to Vertex AI (Google Cloud AI platform): Learn how to establish a connection to Google's AI services using the Vertex AI SDK.
  • Load a pre-trained generative AI model -Gemini: Discover how to use a powerful, pre-trained AI model without building one from scratch.
  • Send image + text questions to the AI model: Understand how to provide input for the AI to process.
  • Extract text-based answers from the AI: Learn to handle and interpret the text responses generated by the AI model.
  • Understand the basics of building AI applications: Gain insights into the core concepts of integrating AI into software projects.

Working with Vertex AI Python SDK

After starting the lab, you will get a split pane view consisting of the Code Editor on the left side and the lab instructions on the right side. Follow these steps to interact with the Generative AI APIs using Vertex AI Python SDK.

  1. Click File > New File to open a new file within the Code Editor.
  2. Copy and paste the provided code snippet into your file.
from google import genai from google.genai.types import HttpOptions, Part client = genai.Client(http_options=HttpOptions(api_version="v1")) response = client.models.generate_content( model="gemini-2.0-flash-001", contents=[ "What is shown in this image?", Part.from_uri( file_uri="gs://cloud-samples-data/generative-ai/image/scones.jpg", mime_type="image/jpeg", ), ], ) print(response.text)
  1. Click File > Save, enter genai.py for the Name field and click Save.

  2. To set the environment variables in the new terminal, run the following command:

    export GOOGLE_CLOUD_PROJECT='{{{ project_0.project_id | "project-id" }}}' export GOOGLE_CLOUD_LOCATION='{{{ project_0.default_region | "REGION" }}}' export GOOGLE_GENAI_USE_VERTEXAI=True
  3. Execute the Python file by invoking the below command inside the terminal within the Code Editor pane to view the output.

/usr/bin/python3 /genai.py Note: If you encounter a 400 error, try re-running the code.

Code Explanation

  • The code snippet is loading a pre-trained AI model called Gemini (gemini-2.0-flash-001) on Vertex AI.
  • The code calls the generate_content method of the loaded Gemini model.
  • The input to the method is an image URI and a prompt containing a question about the image.
  • The code uses Gemini's ability to understand images and text together. It uses the text provided in the prompt to describe the contents of the image.

Try it yourself! Experiment with different image URIs and prompt questions to explore Gemini's capabilities.

Click Check my progress to verify the objective.

Generate content for the image

Congratulations!

You have completed the lab! Congratulations!!

Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

准备工作

  1. 实验会创建一个 Google Cloud 项目和一些资源,供您使用限定的一段时间
  2. 实验有时间限制,并且没有暂停功能。如果您中途结束实验,则必须重新开始。
  3. 在屏幕左上角,点击开始实验即可开始

使用无痕浏览模式

  1. 复制系统为实验提供的用户名密码
  2. 在无痕浏览模式下,点击打开控制台

登录控制台

  1. 使用您的实验凭证登录。使用其他凭证可能会导致错误或产生费用。
  2. 接受条款,并跳过恢复资源页面
  3. 除非您已完成此实验或想要重新开始,否则请勿点击结束实验,因为点击后系统会清除您的工作并移除该项目

此内容目前不可用

一旦可用,我们会通过电子邮件告知您

太好了!

一旦可用,我们会通过电子邮件告知您

一次一个实验

确认结束所有现有实验并开始此实验

使用无痕浏览模式运行实验

请使用无痕模式或无痕式浏览器窗口运行此实验。这可以避免您的个人账号与学生账号之间发生冲突,这种冲突可能导致您的个人账号产生额外费用。