arrow_back

Analyze Sentiment with Natural Language API: Challenge Lab

登录 加入
访问 700 多个实验和课程

Analyze Sentiment with Natural Language API: Challenge Lab

实验 45 分钟 universal_currency_alt 1 积分 show_chart 入门级
info 此实验可能会提供 AI 工具来支持您学习。
访问 700 多个实验和课程

ARC130

Google Cloud self-paced labs logo

Overview

In a challenge lab you’re given a scenario and a set of tasks. Instead of following step-by-step instructions, you will use the skills learned from the labs in the course to figure out how to complete the tasks on your own! An automated scoring system (shown on this page) will provide feedback on whether you have completed your tasks correctly.

When you take a challenge lab, you will not be taught new Google Cloud concepts. You are expected to extend your learned skills, like changing default values and reading and researching error messages to fix your own mistakes.

To score 100% you must successfully complete all tasks within the time period!

Setup and requirements

Before you click the Start Lab button

Read these instructions. Labs are timed and you cannot pause them. The timer, which starts when you click Start Lab, shows how long Google Cloud resources are made available to you.

This hands-on lab lets you do the lab activities in a real cloud environment, not in a simulation or demo environment. It does so by giving you new, temporary credentials you use to sign in and access Google Cloud for the duration of the lab.

To complete this lab, you need:

  • Access to a standard internet browser (Chrome browser recommended).
Note: Use an Incognito (recommended) or private browser window to run this lab. This prevents conflicts between your personal account and the student account, which may cause extra charges incurred to your personal account.
  • Time to complete the lab—remember, once you start, you cannot pause a lab.
Note: Use only the student account for this lab. If you use a different Google Cloud account, you may incur charges to that account.

Challenge scenario

You recently joined an organization and are working as a junior cloud engineer as part of a team. You have been assigned machine learning (ML) projects and one of your client requirements is to use the Cloud Natural Language API service in Google Cloud to perform tasks for the completion of a project.

You are expected to have the skills and knowledge for the tasks that follow.

Your challenge

For this challenge, you are asked to set up Google Docs and perform sentiment analysis on some reviews provided by customers, analyze syntax and parts of speech using the Natural language API, and create a Natural Language API request for a language other than English.

You need to:

  • Create an API key.
  • Set up Google Docs and call the Natural Language API.
  • Analyze syntax and parts of speech with the Natural Language API.
  • Perform multilingual natural language processing.

For this challenge lab, a virtual machine (VM) instance named has been configured for you to complete tasks 3 and 4.

Some standards you should follow:

  • Ensure that any needed APIs (such as the Cloud Natural Language API) are successfully enabled.

Each task is described in detail below, good luck!

Task 1. Create an API key

  1. For this task, you need to create an API key to use in this and other tasks when sending a request to the Natural Language API.

  2. Save the API key to use in other tasks.

Click Check my progress to verify the objective. Create an API key

Task 2. Set up Google Docs and call the Natural Language API

For this task, you need to set up Google Docs to use the Natural Language API and recognize the sentiment of selected text in a Google Docs document and highlight parts of it based on sentiment.

Text is highlighted in red for negative sentiment, green for positive sentiment, and yellow for neutral sentiment.

  1. Create a new Google Docs document.

  2. Use the following code in Apps Script. In the retrieveSentiment function, replace "your key here" with your actual API key from the Google Cloud Console.

/** * @OnlyCurrentDoc * * The above comment directs Apps Script to limit the scope of file * access for this add-on. It specifies that this add-on will only * attempt to read or modify the files in which the add-on is used, * and not all of the user's files. The authorization request message * presented to users will reflect this limited scope. */ /** * Creates a menu entry in the Google Docs UI when the document is * opened. * */ function onOpen() { var ui = DocumentApp.getUi(); ui.createMenu('Natural Language Tools') .addItem('Mark Sentiment', 'markSentiment') .addToUi(); } /** * Gets the user-selected text and highlights it based on sentiment * with green for positive sentiment, red for negative, and yellow * for neutral. * */ function markSentiment() { var POSITIVE_COLOR = '#00ff00'; // Colors for sentiments var NEGATIVE_COLOR = '#ff0000'; var NEUTRAL_COLOR = '#ffff00'; var NEGATIVE_CUTOFF = -0.2; // Thresholds for sentiments var POSITIVE_CUTOFF = 0.2; var selection = DocumentApp.getActiveDocument().getSelection(); if (selection) { var string = getSelectedText(); var sentiment = retrieveSentiment(string); // Select the appropriate color var color = NEUTRAL_COLOR; if (sentiment <= NEGATIVE_CUTOFF) { color = NEGATIVE_COLOR; } if (sentiment >= POSITIVE_CUTOFF) { color = POSITIVE_COLOR; } // Highlight the text var elements = selection.getSelectedElements(); for (var i = 0; i < elements.length; i++) { if (elements[i].isPartial()) { var element = elements[i].getElement().editAsText(); var startIndex = elements[i].getStartOffset(); var endIndex = elements[i].getEndOffsetInclusive(); element.setBackgroundColor(startIndex, endIndex, color); } else { var element = elements[i].getElement().editAsText(); foundText = elements[i].getElement().editAsText(); foundText.setBackgroundColor(color); } } } } /** * Returns a string with the contents of the selected text. * If no text is selected, returns an empty string. */ function getSelectedText() { var selection = DocumentApp.getActiveDocument().getSelection(); var string = ""; if (selection) { var elements = selection.getSelectedElements(); for (var i = 0; i < elements.length; i++) { if (elements[i].isPartial()) { var element = elements[i].getElement().asText(); var startIndex = elements[i].getStartOffset(); var endIndex = elements[i].getEndOffsetInclusive() + 1; var text = element.getText().substring(startIndex, endIndex); string = string + text; } else { var element = elements[i].getElement(); // Only translate elements that can be edited as text; skip // images and other non-text elements. if (element.editAsText) { string = string + element.asText().getText(); } } } } return string; } /** Given a string, will call the Natural Language API and retrieve * the sentiment of the string. The sentiment will be a real * number in the range -1 to 1, where -1 is highly negative * sentiment and 1 is highly positive. */ function retrieveSentiment(line) { var apiKey = "your key here"; // Replace with your actual API key var apiEndpoint = "https://language.googleapis.com/v1/documents:analyzeSentiment?key=" + apiKey; // Create a structure with the text, its language, its type, // and its encoding var docDetails = { language: 'en-us', type: 'PLAIN_TEXT', content: line }; var nlData = { document: docDetails, encodingType: 'UTF8' }; // Package all of the options and the data together for the call var nlOptions = { method : 'post', contentType: 'application/json', payload : JSON.stringify(nlData) }; // And make the call var response = UrlFetchApp.fetch(apiEndpoint, nlOptions); var data = JSON.parse(response); var sentiment = 0.0; // Ensure all pieces were in the returned value if (data && data.documentSentiment && data.documentSentiment.score){ sentiment = data.documentSentiment.score; } return sentiment; }
  1. Add text to your document. You can use the sample that comes from Charles Dickens' novel, A Tale of Two Cities.

Click Check my progress to verify the objective. Set up Google Docs and call the Natural Language API

Task 3. Analyze syntax and parts of speech with the Natural Language API

To complete this task, connect via SSH to the VM instance named that has been provisioned for you.

  1. Create a JSON file called analyze-request.json using the code that follows.
{ "document":{ "type":"PLAIN_TEXT", "content": "Google, headquartered in Mountain View, unveiled the new Android phone at the Consumer Electronic Show. Sundar Pichai said in his keynote that users love their new Android phones." }, "encodingType": "UTF8" }
  1. Pass your request (along with the API key environment variable you saved earlier in task 1) to the Natural Language API using the curl command or analyze syntax using gcloud ML commands.

  2. Save the response in a file called analyze-response.txt.

Click Check my progress to verify the objective. Analyze syntax and parts of speech with the Natural Language API

Task 4. Perform multilingual natural language processing

To complete this task, connect via SSH to the VM instance named that has been provisioned for you.

  1. Create a JSON file called multi-nl-request.json using the code that follows, which contains a sentence in the French language.
{ "document":{ "type":"PLAIN_TEXT", "content":"Le bureau japonais de Google est situé à Roppongi Hills, Tokyo." } }
  1. Pass your request (along with the API key environment variable you saved earlier in task 1) to the Natural Language API using the curl command or analyze syntax using gcloud ML commands.

  2. Save the output in a file called multi-response.txt.

Click Check my progress to verify the objective. Perform multilingual natural language processing

Congratulations!

Congratulations! You have successfully performed sentiment analysis on Google Docs text as well as analyzed syntax and parts of speech by calling the Natural Language API.

Analyze Sentiment with Natural Language API badge

Google Cloud training and certification

...helps you make the most of Google Cloud technologies. Our classes include technical skills and best practices to help you get up to speed quickly and continue your learning journey. We offer fundamental to advanced level training, with on-demand, live, and virtual options to suit your busy schedule. Certifications help you validate and prove your skill and expertise in Google Cloud technologies.

Manual Last Updated July 17, 2024

Lab Last Tested July 17, 2024

Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

准备工作

  1. 实验会创建一个 Google Cloud 项目和一些资源,供您使用限定的一段时间
  2. 实验有时间限制,并且没有暂停功能。如果您中途结束实验,则必须重新开始。
  3. 在屏幕左上角,点击开始实验即可开始

使用无痕浏览模式

  1. 复制系统为实验提供的用户名密码
  2. 在无痕浏览模式下,点击打开控制台

登录控制台

  1. 使用您的实验凭证登录。使用其他凭证可能会导致错误或产生费用。
  2. 接受条款,并跳过恢复资源页面
  3. 除非您已完成此实验或想要重新开始,否则请勿点击结束实验,因为点击后系统会清除您的工作并移除该项目

此内容目前不可用

一旦可用,我们会通过电子邮件告知您

太好了!

一旦可用,我们会通过电子邮件告知您

一次一个实验

确认结束所有现有实验并开始此实验

使用无痕浏览模式运行实验

请使用无痕模式或无痕式浏览器窗口运行此实验。这可以避免您的个人账号与学生账号之间发生冲突,这种冲突可能导致您的个人账号产生额外费用。