In this notebook, you use encoder-decoder architecture to create a text translation function.
Learning Objectives
Create a tf.data.Dataset for a seq2seq problem.
Train an encoder-decoder model in Keras for a translation task.
Save the encoder and the decoder as separate model.
Merge the trained encoder and decoder into a translation function.
Setup
For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.
Sign in to Qwiklabs using an incognito window.
Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
There is no pause feature. You can restart if needed, but you have to start at the beginning.
When ready, click Start lab.
Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.
Click Open Google Console.
Click Use another account and copy/paste credentials for this lab into the prompts.
If you use other credentials, you'll receive errors or incur charges.
Accept the terms and skip the recovery resource page.
Setup your environement
Enable the AI Platform Training & Prediction API
On the Navigation menu, navigate to APIs & services > Library and search for AI Platform Training & Prediction API in the search box.
Click on AI Platform Training & Prediction API, then click Enable.
Task 1. Create Cloud Storage Bucket
On the Navigation menu, navigate to Cloud Storage > Buckets and Click on Create bucket.
Set a unique name (use your project ID because it is unique) and click Continue.
For Location type select Region and from the dropdown select .
Click Create.
Select Confirm for the prompt Public access will be prevented.
Task 2. Launch Vertex AI Workbench instance
In the Google Cloud console, from the Navigation menu (), select Vertex AI.
Click Enable All Recommended APIs.
In the Navigation menu, click Workbench.
At the top of the Workbench page, ensure you are in the Instances view.
Click Create New.
Configure the Instance:
Name: lab-workbench
Region: Set the region to
Zone: Set the zone to
Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).
Click Create.
This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.
Click OPEN JUPYTERLAB next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.
Click Check my progress to verify the objective.
Launch Vertex AI Workbench instance
Task 3. Clone a course repo within your JupyterLab interface
To clone the training-data-analyst notebook in your JupyterLab instance:
Step 1
In JupyterLab, click the Terminal icon to open a new terminal.
Step 2
At the command-line prompt, type in the following command and press Enter.
Confirm that you have cloned the repository by double clicking on the training-data-analyst directory and ensuring that you can see its contents. The files for all the Jupyter notebook-based labs throughout this course are available in this directory.
Click Check my progress to verify the objective.
Clone a course repo within your JupyterLab interface
Task 4. Reusable Embeddings
In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > text_classification > labs > rnn_encoder_decoder.ipynb.
For the Select Kernel dialog pop-up, select TensorFlow 2-11 (Local) from the list of available kernels.
In the notebook interface, click on Edit > Clear All Outputs (click on Edit, then in the drop-down menu, select Clear All Outputs).
Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code as needed
Tip: To run the current cell you can click the cell and hit SHIFT+ENTER. Other cell commands are found in the notebook UI under Run.
Hints may also be provided for the tasks to guide you along. Highlight the text to read the hints (they are in white text).
If you need more help, look at the complete solution by navigating to training-data-analyst > courses > machine_learning > deepdive2 > text_classification > solutions and opening rnn_encoder_decoder.ipynb.
End your lab
When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.
You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.
The number of stars indicates the following:
1 star = Very dissatisfied
2 stars = Dissatisfied
3 stars = Neutral
4 stars = Satisfied
5 stars = Very satisfied
You can close the dialog box if you don't want to provide feedback.
For feedback, suggestions, or corrections, please use the Support tab.
Copyright 2024 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Os laboratórios criam um projeto e recursos do Google Cloud por um período fixo
Os laboratórios têm um limite de tempo e não têm o recurso de pausa. Se você encerrar o laboratório, vai precisar recomeçar do início.
No canto superior esquerdo da tela, clique em Começar o laboratório
Usar a navegação anônima
Copie o nome de usuário e a senha fornecidos para o laboratório
Clique em Abrir console no modo anônimo
Fazer login no console
Faça login usando suas credenciais do laboratório. Usar outras credenciais pode causar erros ou gerar cobranças.
Aceite os termos e pule a página de recursos de recuperação
Não clique em Terminar o laboratório a menos que você tenha concluído ou queira recomeçar, porque isso vai apagar seu trabalho e remover o projeto
Este conteúdo não está disponível no momento
Você vai receber uma notificação por e-mail quando ele estiver disponível
Ótimo!
Vamos entrar em contato por e-mail se ele ficar disponível
Um laboratório por vez
Confirme para encerrar todos os laboratórios atuais e iniciar este
Use a navegação anônima para executar o laboratório
Para executar este laboratório, use o modo de navegação anônima ou uma janela anônima do navegador. Isso evita conflitos entre sua conta pessoal e a conta de estudante, o que poderia causar cobranças extras na sua conta pessoal.
Use this template for lab guides created after April 8, 2020. Report issues to yoanna long.
Duração:
Configuração: 0 minutos
·
Tempo de acesso: 90 minutos
·
Tempo para conclusão: 60 minutos