arrow_back

Applying Contextual Bandits for Recommendations with Tensorflow and TF-Agents

로그인 가입
700개 이상의 실습 및 과정 이용하기

Applying Contextual Bandits for Recommendations with Tensorflow and TF-Agents

실습 2시간 universal_currency_alt 크레딧 5개 show_chart 고급
info 이 실습에는 학습을 지원하는 AI 도구가 통합되어 있을 수 있습니다.
700개 이상의 실습 및 과정 이용하기

Overview

In this lab, you build a Contextual Bandits agent in order to recommend another movie to watch (based on the Movielens dataset) to a user. For this, you first learn how to instantiate a Vertex AI Workbench notebook instance and eventually how to load data to Tensorflow (TF) and build an agent using the TF Agents library.

Learning objectives

  • Install and import required libraries.
  • Initialize and configure the MovieLens Environment.
  • Initialize the Agent.
  • Define and link the evaluation metrics.
  • Initialize and configure the Replay Buffer.
  • Set up and train the model.
  • Observe the results of trained model and Vertex AI Tensorboard evaluation.

Setup

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Task 1. Set up your environment

Enable the Recommended APIs

  1. In the Google Cloud Console, on the Navigation menu, click Vertex AI.
  2. Click Enable All Recommended API.

Task 2. Launch a Vertex AI Workbench instance

  1. In the Google Cloud Console, on the Navigation Menu, click Vertex AI > Workbench. Select User-Managed Notebooks.

  2. On the Notebook instances page, Click Create New and choose the latest version of TensorFlow Enterprise 2.6 (with LTS) in Environment.

  3. In the New notebook instance dialog, confirm the name of the deep learning VM, if you don’t want to change the region and zone, leave all settings as they are and then click Create. The new VM will take 2-3 minutes to start.

  4. Click Open JupyterLab.
    A JupyterLab window will open in a new tab.

Task 3. Clone a course repo within your Vertex AI Workbench instance

To clone the training-data-analyst notebook in your JupyterLab instance:

  1. In JupyterLab, to open a new terminal, click the Terminal icon.

  2. At the command-line prompt, run the following command:

    git clone https://github.com/GoogleCloudPlatform/training-data-analyst
  3. To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
    The files for all the Jupyter notebook-based labs throughout this course are available in this directory.

Task 4. Build a RL model in your Vertex AI Workbench instance

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > recommendation_systems > labs, and open exercise_movielens_notebook.ipynb.

  2. In the notebook interface, click Edit > Clear All Outputs.

  3. Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.

    Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.

  • Hints may also be provided for the tasks to guide you along. Highlight the text to read the hints, which are in white text.
  • If you need more help, look at the complete solution at training-data-analyst > courses > machine_learning > deepdive2 > recommendation_systems > solutions, and open exercise_movielens_notebook.ipynb.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

시작하기 전에

  1. 실습에서는 정해진 기간 동안 Google Cloud 프로젝트와 리소스를 만듭니다.
  2. 실습에는 시간 제한이 있으며 일시중지 기능이 없습니다. 실습을 종료하면 처음부터 다시 시작해야 합니다.
  3. 화면 왼쪽 상단에서 실습 시작을 클릭하여 시작합니다.

시크릿 브라우징 사용

  1. 실습에 입력한 사용자 이름비밀번호를 복사합니다.
  2. 비공개 모드에서 콘솔 열기를 클릭합니다.

콘솔에 로그인

    실습 사용자 인증 정보를 사용하여
  1. 로그인합니다. 다른 사용자 인증 정보를 사용하면 오류가 발생하거나 요금이 부과될 수 있습니다.
  2. 약관에 동의하고 리소스 복구 페이지를 건너뜁니다.
  3. 실습을 완료했거나 다시 시작하려고 하는 경우가 아니면 실습 종료를 클릭하지 마세요. 이 버튼을 클릭하면 작업 내용이 지워지고 프로젝트가 삭제됩니다.

현재 이 콘텐츠를 이용할 수 없습니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

감사합니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

한 번에 실습 1개만 가능

모든 기존 실습을 종료하고 이 실습을 시작할지 확인하세요.

시크릿 브라우징을 사용하여 실습 실행하기

이 실습을 실행하려면 시크릿 모드 또는 시크릿 브라우저 창을 사용하세요. 개인 계정과 학생 계정 간의 충돌로 개인 계정에 추가 요금이 발생하는 일을 방지해 줍니다.