arrow_back

Applying Contextual Bandits for Recommendations with Tensorflow and TF-Agents

ログイン 参加
700 以上のラボとコースにアクセス

Applying Contextual Bandits for Recommendations with Tensorflow and TF-Agents

ラボ 2時間 universal_currency_alt クレジット: 5 show_chart 上級
info このラボでは、学習をサポートする AI ツールが組み込まれている場合があります。
700 以上のラボとコースにアクセス

Overview

In this lab, you build a Contextual Bandits agent in order to recommend another movie to watch (based on the Movielens dataset) to a user. For this, you first learn how to instantiate a Vertex AI Workbench notebook instance and eventually how to load data to Tensorflow (TF) and build an agent using the TF Agents library.

Learning objectives

  • Install and import required libraries.
  • Initialize and configure the MovieLens Environment.
  • Initialize the Agent.
  • Define and link the evaluation metrics.
  • Initialize and configure the Replay Buffer.
  • Set up and train the model.
  • Observe the results of trained model and Vertex AI Tensorboard evaluation.

Setup

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Task 1. Set up your environment

Enable the Recommended APIs

  1. In the Google Cloud Console, on the Navigation menu, click Vertex AI.
  2. Click Enable All Recommended API.

Task 2. Launch a Vertex AI Workbench instance

  1. In the Google Cloud Console, on the Navigation Menu, click Vertex AI > Workbench. Select User-Managed Notebooks.

  2. On the Notebook instances page, Click Create New and choose the latest version of TensorFlow Enterprise 2.6 (with LTS) in Environment.

  3. In the New notebook instance dialog, confirm the name of the deep learning VM, if you don’t want to change the region and zone, leave all settings as they are and then click Create. The new VM will take 2-3 minutes to start.

  4. Click Open JupyterLab.
    A JupyterLab window will open in a new tab.

Task 3. Clone a course repo within your Vertex AI Workbench instance

To clone the training-data-analyst notebook in your JupyterLab instance:

  1. In JupyterLab, to open a new terminal, click the Terminal icon.

  2. At the command-line prompt, run the following command:

    git clone https://github.com/GoogleCloudPlatform/training-data-analyst
  3. To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
    The files for all the Jupyter notebook-based labs throughout this course are available in this directory.

Task 4. Build a RL model in your Vertex AI Workbench instance

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > recommendation_systems > labs, and open exercise_movielens_notebook.ipynb.

  2. In the notebook interface, click Edit > Clear All Outputs.

  3. Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.

    Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.

  • Hints may also be provided for the tasks to guide you along. Highlight the text to read the hints, which are in white text.
  • If you need more help, look at the complete solution at training-data-analyst > courses > machine_learning > deepdive2 > recommendation_systems > solutions, and open exercise_movielens_notebook.ipynb.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

始める前に

  1. ラボでは、Google Cloud プロジェクトとリソースを一定の時間利用します
  2. ラボには時間制限があり、一時停止機能はありません。ラボを終了した場合は、最初からやり直す必要があります。
  3. 画面左上の [ラボを開始] をクリックして開始します

シークレット ブラウジングを使用する

  1. ラボで使用するユーザー名パスワードをコピーします
  2. プライベート モードで [コンソールを開く] をクリックします

コンソールにログインする

    ラボの認証情報を使用して
  1. ログインします。他の認証情報を使用すると、エラーが発生したり、料金が発生したりする可能性があります。
  2. 利用規約に同意し、再設定用のリソースページをスキップします
  3. ラボを終了する場合や最初からやり直す場合を除き、[ラボを終了] はクリックしないでください。クリックすると、作業内容がクリアされ、プロジェクトが削除されます

このコンテンツは現在ご利用いただけません

利用可能になりましたら、メールでお知らせいたします

ありがとうございます。

利用可能になりましたら、メールでご連絡いたします

1 回に 1 つのラボ

既存のラボをすべて終了して、このラボを開始することを確認してください

シークレット ブラウジングを使用してラボを実行する

このラボの実行には、シークレット モードまたはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウントの競合を防ぎ、個人アカウントに追加料金が発生することを防ぎます。