arrow_back

Classifying Images with pre-built TF Container on Vertex AI

로그인 가입
700개 이상의 실습 및 과정 이용하기

Classifying Images with pre-built TF Container on Vertex AI

실습 1시간 30분 universal_currency_alt 크레딧 5개 show_chart 고급
info 이 실습에는 학습을 지원하는 AI 도구가 통합되어 있을 수 있습니다.
700개 이상의 실습 및 과정 이용하기

Overview

In this lab, you learn how to implement different image models on MNIST using the tf.keras API.

Learning objectives

  1. Understand how to build a Dense Neural Network (DNN) for image classification.
  2. Understand how to use dropout (DNN) for image classification.
  3. Understand how to use Convolutional Neural Networks (CNN).
  4. Know how to deploy and use an image classifcation model using Google Cloud's Vertex AI.

Task 0. Setup and requirements

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Task 1. Create a Cloud Storage bucket

  1. Navigate to Navigation menu > Cloud Storage in the Cloud console for your project, then click CREATE BUCKET.

  2. Set a unique name (use your project ID because it is unique) and then choose region as . Then, click Create.

  3. Confirm Enforce public access prevention on this bucket on "Public access will be prevented" pop-up.

Click Check my progress to verify the objective. Create a cloud storage bucket

Task 2. Launch a Vertex AI Workbench instance

  1. In the Google Cloud console, from the Navigation menu (Navigation menu), select Vertex AI.

  2. Click Enable All Recommended APIs.

  3. In the Navigation menu, click Workbench.

    At the top of the Workbench page, ensure you are in the Instances view.

  4. Click add boxCreate New.

  5. Configure the Instance:

    • Name: lab-workbench
    • Region: Set the region to
    • Zone: Set the zone to
    • Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).

Create a Vertex AI Workbench instance

  1. Click Create.

This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.

  1. Click OPEN JUPYTERLAB next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.

Workbench Instance Deployed

Click Check my progress to verify the objective. Create Vertex AI Platform Workbench instance

Task 3. Clone a course repo within your Vertex AI Workbench instance

To clone the training-data-analyst notebook in your JupyterLab instance:

Step 1

In JupyterLab, click the Terminal icon to open a new terminal.

Open Terminal

Step 2

At the command-line prompt, type in the following command and press Enter.

git clone https://github.com/GoogleCloudPlatform/training-data-analyst

Step 3

Confirm that you have cloned the repository by double clicking on the training-data-analyst directory and ensuring that you can see its contents. The files for all the Jupyter notebook-based labs throughout this course are available in this directory.

Training data analyst repository

Click Check my progress to verify the objective. Clone course repo within your Vertex AI Platform Workbench instance

Task 4. Classify images with pre-built TF container on Vertex AI

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > computer_vision_fun > labs and open classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb.

  2. In the Select Kernel dialog, choose TensorFlow 2-11 (Local) from the list of available kernels.

  3. In the notebook interface, click Edit > Clear All Outputs.

  4. Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.

Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.

  • Hints may also be provided for the tasks to guide you. Highlight the text to read the hints, which are in white text.
  • To view the complete solution, navigate to training-data-analyst > courses > machine_learning > deepdive2 > computer_vision_fun > solutions, and open classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb.

Click Check my progress to verify the objective. Classify images with pre-built TF container on Vertex AI

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

시작하기 전에

  1. 실습에서는 정해진 기간 동안 Google Cloud 프로젝트와 리소스를 만듭니다.
  2. 실습에는 시간 제한이 있으며 일시중지 기능이 없습니다. 실습을 종료하면 처음부터 다시 시작해야 합니다.
  3. 화면 왼쪽 상단에서 실습 시작을 클릭하여 시작합니다.

시크릿 브라우징 사용

  1. 실습에 입력한 사용자 이름비밀번호를 복사합니다.
  2. 비공개 모드에서 콘솔 열기를 클릭합니다.

콘솔에 로그인

    실습 사용자 인증 정보를 사용하여
  1. 로그인합니다. 다른 사용자 인증 정보를 사용하면 오류가 발생하거나 요금이 부과될 수 있습니다.
  2. 약관에 동의하고 리소스 복구 페이지를 건너뜁니다.
  3. 실습을 완료했거나 다시 시작하려고 하는 경우가 아니면 실습 종료를 클릭하지 마세요. 이 버튼을 클릭하면 작업 내용이 지워지고 프로젝트가 삭제됩니다.

현재 이 콘텐츠를 이용할 수 없습니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

감사합니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

한 번에 실습 1개만 가능

모든 기존 실습을 종료하고 이 실습을 시작할지 확인하세요.

시크릿 브라우징을 사용하여 실습 실행하기

이 실습을 실행하려면 시크릿 모드 또는 시크릿 브라우저 창을 사용하세요. 개인 계정과 학생 계정 간의 충돌로 개인 계정에 추가 요금이 발생하는 일을 방지해 줍니다.