In this lab, you learn how to implement different image models on MNIST using the tf.keras API.
Learning objectives
Understand how to build a Dense Neural Network (DNN) for image classification.
Understand how to use dropout (DNN) for image classification.
Understand how to use Convolutional Neural Networks (CNN).
Know how to deploy and use an image classifcation model using Google Cloud's Vertex AI.
Task 0. Setup and requirements
For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.
Sign in to Qwiklabs using an incognito window.
Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
There is no pause feature. You can restart if needed, but you have to start at the beginning.
When ready, click Start lab.
Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.
Click Open Google Console.
Click Use another account and copy/paste credentials for this lab into the prompts.
If you use other credentials, you'll receive errors or incur charges.
Accept the terms and skip the recovery resource page.
Task 1. Create a Cloud Storage bucket
Navigate to Navigation menu > Cloud Storage in the Cloud console for your project, then click CREATE BUCKET.
Set a unique name (use your project ID because it is unique) and then choose region as . Then, click Create.
Confirm Enforce public access prevention on this bucket on "Public access will be prevented" pop-up.
Click Check my progress to verify the objective.
Create a cloud storage bucket
Task 2. Launch a Vertex AI Workbench instance
In the Google Cloud console, from the Navigation menu (), select Vertex AI.
Click Enable All Recommended APIs.
In the Navigation menu, click Workbench.
At the top of the Workbench page, ensure you are in the Instances view.
Click Create New.
Configure the Instance:
Name: lab-workbench
Region: Set the region to
Zone: Set the zone to
Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).
Click Create.
This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.
Click OPEN JUPYTERLAB next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.
Click Check my progress to verify the objective.
Create Vertex AI Platform Workbench instance
Task 3. Clone a course repo within your Vertex AI Workbench instance
To clone the training-data-analyst notebook in your JupyterLab instance:
Step 1
In JupyterLab, click the Terminal icon to open a new terminal.
Step 2
At the command-line prompt, type in the following command and press Enter.
Confirm that you have cloned the repository by double clicking on the training-data-analyst directory and ensuring that you can see its contents. The files for all the Jupyter notebook-based labs throughout this course are available in this directory.
Click Check my progress to verify the objective.
Clone course repo within your Vertex AI Platform Workbench instance
Task 4. Classify images with pre-built TF container on Vertex AI
In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > computer_vision_fun > labs and open classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb.
In the Select Kernel dialog, choose TensorFlow 2-11 (Local) from the list of available kernels.
In the notebook interface, click Edit > Clear All Outputs.
Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.
Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.
Hints may also be provided for the tasks to guide you. Highlight the text to read the hints, which are in white text.
To view the complete solution, navigate to training-data-analyst > courses > machine_learning > deepdive2 > computer_vision_fun > solutions, and open classifying_images_with_pre-built_tf_container_on_vertex_ai.ipynb.
Click Check my progress to verify the objective.
Classify images with pre-built TF container on Vertex AI
End your lab
When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.
You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.
The number of stars indicates the following:
1 star = Very dissatisfied
2 stars = Dissatisfied
3 stars = Neutral
4 stars = Satisfied
5 stars = Very satisfied
You can close the dialog box if you don't want to provide feedback.
For feedback, suggestions, or corrections, please use the Support tab.
Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Les ateliers créent un projet Google Cloud et des ressources pour une durée déterminée.
Les ateliers doivent être effectués dans le délai imparti et ne peuvent pas être mis en pause. Si vous quittez l'atelier, vous devrez le recommencer depuis le début.
En haut à gauche de l'écran, cliquez sur Démarrer l'atelier pour commencer.
Utilisez la navigation privée
Copiez le nom d'utilisateur et le mot de passe fournis pour l'atelier
Cliquez sur Ouvrir la console en navigation privée
Connectez-vous à la console
Connectez-vous à l'aide des identifiants qui vous ont été attribués pour l'atelier. L'utilisation d'autres identifiants peut entraîner des erreurs ou des frais.
Acceptez les conditions d'utilisation et ignorez la page concernant les ressources de récupération des données.
Ne cliquez pas sur Terminer l'atelier, à moins que vous n'ayez terminé l'atelier ou que vous ne vouliez le recommencer, car cela effacera votre travail et supprimera le projet.
Ce contenu n'est pas disponible pour le moment
Nous vous préviendrons par e-mail lorsqu'il sera disponible
Parfait !
Nous vous contacterons par e-mail s'il devient disponible
Un atelier à la fois
Confirmez pour mettre fin à tous les ateliers existants et démarrer celui-ci
Utilisez la navigation privée pour effectuer l'atelier
Ouvrez une fenêtre de navigateur en mode navigation privée pour effectuer cet atelier. Vous éviterez ainsi les conflits entre votre compte personnel et le compte temporaire de participant, qui pourraient entraîner des frais supplémentaires facturés sur votre compte personnel.
In this lab, you learn how to implement different image models on MNIST using the tf.keras API.
Durée :
0 min de configuration
·
Accessible pendant 90 min
·
Terminé après 90 min