arrow_back

Structured data prediction using Vertex AI Platform

Zyskaj dostęp do ponad 700 modułów i kursów

Structured data prediction using Vertex AI Platform

Moduł 1 godz. 30 godz. universal_currency_alt Punkty: 5 show_chart Zaawansowane
info Ten moduł może zawierać narzędzia AI, które ułatwią Ci naukę.
Zyskaj dostęp do ponad 700 modułów i kursów

Overview

In this lab you train, evaluate, and deploy a machine learning model to predict a baby's weight.

What you learn

In this lab, you:

  • Launch Vertex AI Workbench instance
  • Create a BigQuery Dataset and GCS Bucket
  • Export from BigQuery to CSVs in GCS
  • Training on Cloud AI Platform
  • Deploy trained model

Setup your lab

Start your lab

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Enable the AI Platform Training & Prediction API

  1. In the API library, Search for "AI Platform Training & Prediction API" and click the AI Platform Training & Prediction API card.

  2. Click Enable to activate the API. If you see Manage, the API is already activated.

Task 1. Create storage bucket

  1. In the Google Cloud Console, on the Navigation menu (Navigation menu icon), click Cloud Storage > Buckets.

  2. Click + Create.

  3. Type a unique name for your bucket, such as your project ID.

  4. Click Create.

  5. Confirm Enforce public access prevention on this bucket on "Public access will be prevented" pop-up.

Task 2. Launch Vertex AI Workbench instance

  1. In the Google Cloud console, from the Navigation menu (Navigation menu), select Vertex AI > Dashboard.

  2. Click Enable All Recommended APIs.

  3. In the Navigation menu, click Workbench.

    At the top of the Workbench page, ensure you are in the Instances view.

  4. Click add boxCreate New.

  5. Configure the Instance:

    • Name: lab-workbench
    • Region: Set the region to
    • Zone: Set the zone to
    • Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).

Create a Vertex AI Workbench instance

  1. Click Create.

This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.

  1. Click Open Jupyterlab next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.

Workbench Instance Deployed

  1. Click the Python 3 icon to launch a new Python notebook.

Open the Jupyter Notebook

  1. Right-click on the Untitled.ipynb file in the menu bar and select Rename Notebook to give it a meaningful name.

Rename the notebook

Your environment is set up. You are now ready to start working with your Vertex AI Workbench notebook.

Vertex Notebook ready for use

Click Check my progress to verify the objective. Launch Vertex AI Workbench instance

Task 3. Clone course repo within your Vertex AI Workbench instance

The GitHub repo contains both the lab file and solutions files for the course.

  1. Copy and run the following code in the first cell of your notebook to clone the training-data-analyst repository.
!git clone https://github.com/GoogleCloudPlatform/training-data-analyst

Clone raining-data-analyst Repo

  1. Confirm that you have cloned the repository. Double-click on the training-data-analyst directory and ensure that you can see its contents.

confirm training-data-analyst repo

Click Check my progress to verify the objective. Clone course repo within your Vertex AI Workbench instance

Task 4. Structured data prediction using Vertex AI Platform

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > production_ml > babyweight, and open train_deploy.ipynb.

  2. In the Select Kernel dialog, choose Python 3 from the list of available kernels.

  3. From the menu, click Edit > Clear All Outputs.

  4. Read the narrative and click Shift + Enter (or Run) on each cell in the notebook.

Task 5. Test your knowledge

Test your knowledge about Google cloud Platform by taking our quiz.

Congratulations!

You learned how to train, evaluate, and deploy a machine learning model in Vertex AI notebooks.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

Zanim zaczniesz

  1. Moduły tworzą projekt Google Cloud i zasoby na określony czas.
  2. Moduły mają ograniczenie czasowe i nie mają funkcji wstrzymywania. Jeśli zakończysz moduł, musisz go zacząć od początku.
  3. Aby rozpocząć, w lewym górnym rogu ekranu kliknij Rozpocznij moduł.

Użyj przeglądania prywatnego

  1. Skopiuj podaną nazwę użytkownika i hasło do modułu.
  2. Kliknij Otwórz konsolę w trybie prywatnym.

Zaloguj się w konsoli

  1. Zaloguj się z użyciem danych logowania do modułu. Użycie innych danych logowania może spowodować błędy lub naliczanie opłat.
  2. Zaakceptuj warunki i pomiń stronę zasobów przywracania.
  3. Nie klikaj Zakończ moduł, chyba że właśnie został przez Ciebie zakończony lub chcesz go uruchomić ponownie, ponieważ spowoduje to usunięcie wyników i projektu.

Ta treść jest obecnie niedostępna

Kiedy dostępność się zmieni, wyślemy Ci e-maila z powiadomieniem

Świetnie

Kiedy dostępność się zmieni, skontaktujemy się z Tobą e-mailem

Jeden moduł, a potem drugi

Potwierdź, aby zakończyć wszystkie istniejące moduły i rozpocząć ten

Aby uruchomić moduł, użyj przeglądania prywatnego

Uruchom ten moduł w oknie incognito lub przeglądania prywatnego. Dzięki temu unikniesz konfliktu między swoim kontem osobistym a kontem do nauki, co mogłoby spowodować naliczanie dodatkowych opłat na koncie osobistym.