arrow_back

Introduction to TensorFlow Data Validation

Accedi Partecipa
Accedi a oltre 700 lab e corsi

Introduction to TensorFlow Data Validation

Lab 2 ore universal_currency_alt 5 crediti show_chart Avanzati
info Questo lab potrebbe incorporare strumenti di AI a supporto del tuo apprendimento.
Accedi a oltre 700 lab e corsi

Overview

This lab is an introduction to TensorFlow Data Validation (TFDV), a key component of TensorFlow Extended. This lab serves as a foundation for understanding the features of TFDV and how it can help you understand, validate, and monitor your data.

TFDV can be used for generating schemas and statistics about the distribution of every feature in the dataset. Such information is useful for comparing multiple datasets (e.g., training vs inference datasets) and reporting.

Statistical differences in the features distribution TFDV also offers visualization capabilities for comparing datasets based on the Google PAIR Facets project.

Learning objectives

You learn how to:

  • Review TFDV methods.
  • Generate statistics.
  • Visualize statistics.
  • Infer a schema.
  • Update a schema.

Setup

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Task 1. Launch Vertex AI Workbench instance

  1. In the Google Cloud console, from the Navigation menu (Navigation menu), select Vertex AI > Dashboard.

  2. Click Enable All Recommended APIs.

  3. In the Navigation menu, click Workbench.

    At the top of the Workbench page, ensure you are in the Instances view.

  4. Click add boxCreate New.

  5. Configure the Instance:

    • Name: lab-workbench
    • Region: Set the region to
    • Zone: Set the zone to
    • Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).

Create a Vertex AI Workbench instance

  1. Click Create.

This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.

  1. Click Open Jupyterlab next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.

Workbench Instance Deployed

  1. Click the Python 3 icon to launch a new Python notebook.

Open the Jupyter Notebook

  1. Right-click on the Untitled.ipynb file in the menu bar and select Rename Notebook to give it a meaningful name.

Rename the notebook

Your environment is set up. You are now ready to start working with your Vertex AI Workbench notebook.

Vertex Notebook ready for use

Click Check my progress to verify the objective. Launch Vertex AI Workbench instance

Task 2. Clone a course repo within your JupyterLab interface

The GitHub repo contains both the lab file and solutions files for the course.

  1. Copy and run the following code in the first cell of your notebook to clone the training-data-analyst repository.
!git clone https://github.com/GoogleCloudPlatform/training-data-analyst

Clone raining-data-analyst Repo

  1. Confirm that you have cloned the repository. Double-click on the training-data-analyst directory and ensure that you can see its contents.

confirm training-data-analyst repo

Click Check my progress to verify the objective. Clone a course repo within your JupyterLab interface

Task 3. Introduction to TensorFlow data validation

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > production_ml > labs, and open tfdv_basic_spending.ipynb.

  2. In the Select Kernel dialog, choose Python 3 from the list of available kernels.

  3. In the notebook interface, click Edit > Clear All Outputs.

Carefully read through the notebook instructions and fill in lines marked with #TODO where you need to complete the code.

Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under Run.

  • Hints may also be provided for the tasks to guide you along. Highlight the text to read the hints (they are in white text).
  • If you need more help, look at the complete solution at training-data-analyst > courses > machine_learning > deepdive2 > production_ml > solutions and open tfdv_basic_spending.ipynb.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

Prima di iniziare

  1. I lab creano un progetto e risorse Google Cloud per un periodo di tempo prestabilito
  2. I lab hanno un limite di tempo e non possono essere messi in pausa. Se termini il lab, dovrai ricominciare dall'inizio.
  3. In alto a sinistra dello schermo, fai clic su Inizia il lab per iniziare

Utilizza la navigazione privata

  1. Copia il nome utente e la password forniti per il lab
  2. Fai clic su Apri console in modalità privata

Accedi alla console

  1. Accedi utilizzando le tue credenziali del lab. L'utilizzo di altre credenziali potrebbe causare errori oppure l'addebito di costi.
  2. Accetta i termini e salta la pagina di ripristino delle risorse
  3. Non fare clic su Termina lab a meno che tu non abbia terminato il lab o non voglia riavviarlo, perché il tuo lavoro verrà eliminato e il progetto verrà rimosso

Questi contenuti non sono al momento disponibili

Ti invieremo una notifica via email quando sarà disponibile

Bene.

Ti contatteremo via email non appena sarà disponibile

Un lab alla volta

Conferma per terminare tutti i lab esistenti e iniziare questo

Utilizza la navigazione privata per eseguire il lab

Utilizza una finestra del browser in incognito o privata per eseguire questo lab. In questo modo eviterai eventuali conflitti tra il tuo account personale e l'account Studente, che potrebbero causare addebiti aggiuntivi sul tuo account personale.