L'API tf.distribute.Strategy fournit une abstraction permettant de distribuer votre entraînement sur plusieurs unités de traitement. L'objectif est de permettre aux utilisateurs de distribuer l'entraînement à l'aide de modèles existants et de code d'entraînement, avec le moins de modifications possible.
Cet atelier utilise tf.distribute.MirroredStrategy, qui effectue une réplication intra-graphe avec un entraînement synchrone sur de nombreux GPU d'une seule machine. En bref, tf.distribute.MirroredStrategy copie toutes les variables du modèle sur chaque processeur. Ensuite, il utilise all-reduce pour combiner les gradients de l'ensemble des processeurs, et applique la valeur combinée à toutes les copies du modèle.
MirroredStrategy fait partie des stratégies de distribution disponibles dans TensorFlow Core. Pour plus d'informations sur les stratégies, consultez le guide de stratégie de distribution.
Objectifs de l'atelier
Vous allez apprendre à :
définir une stratégie de distribution et configurer un pipeline en entrée ;
créer le modèle Keras ;
définir les rappels ;
entraîner et évaluer le modèle.
Préparation
Pour chaque atelier, nous vous attribuons un nouveau projet Google Cloud et un nouvel ensemble de ressources pour une durée déterminée, sans frais.
Connectez-vous à Qwiklabs dans une fenêtre de navigation privée.
Vérifiez le temps imparti pour l'atelier (par exemple : 01:15:00) : vous devez pouvoir le terminer dans ce délai.
Une fois l'atelier lancé, vous ne pouvez pas le mettre en pause. Si nécessaire, vous pourrez le redémarrer, mais vous devrez tout reprendre depuis le début.
Lorsque vous êtes prêt, cliquez sur Démarrer l'atelier.
Notez vos identifiants pour l'atelier (Nom d'utilisateur et Mot de passe). Ils vous serviront à vous connecter à Google Cloud Console.
Cliquez sur Ouvrir la console Google.
Cliquez sur Utiliser un autre compte, puis copiez-collez les identifiants de cet atelier lorsque vous y êtes invité.
Si vous utilisez d'autres identifiants, des messages d'erreur s'afficheront ou des frais seront appliqués.
Acceptez les conditions d'utilisation et ignorez la page concernant les ressources de récupération des données.
Tâche 1 : Lancer une instance Vertex AI Workbench
Dans le menu de navigation () de la console Google Cloud, sélectionnez Vertex AI.
Cliquez sur Activer toutes les API recommandées.
Dans le menu de navigation, cliquez sur Workbench.
En haut de la page "Workbench", vérifiez que vous vous trouvez dans la vue Instances.
Cliquez sur Créer.
Configurez l'instance :
Nom : lab-workbench
Région : définissez la région sur
Zone : définissez la zone sur
Options avancées (facultatif) : si nécessaire, cliquez sur "Options avancées" pour une personnalisation plus avancée (par exemple, type de machine, taille du disque).
Cliquez sur Créer.
La création de l'instance prend quelques minutes. Une coche verte apparaît à côté de son nom quand elle est prête.
Cliquez sur Ouvrir JupyterLab à côté du nom de l'instance pour lancer l'interface JupyterLab. Un nouvel onglet s'ouvre alors dans votre navigateur.
Cliquez sur l'icône Python 3 pour lancer un nouveau notebook Python.
Effectuez un clic droit sur le fichier Untitled.ipynb dans la barre de menu et sélectionnez Renommer le notebook pour lui attribuer un nom significatif.
Votre environnement est configuré. Vous êtes maintenant prêt à utiliser votre notebook Vertex AI Workbench.
Cliquez sur Vérifier ma progression pour valider l'objectif.
Lancer une instance Vertex AI Workbench
Tâche 2 : Cloner un dépôt du cours dans votre interface JupyterLab
Le dépôt GitHub contient le fichier de l'atelier et les fichiers de solution du cours.
Copiez et exécutez le code suivant dans la première cellule de votre notebook pour cloner le dépôt training-data-analyst.
Vérifiez que vous avez bien cloné le dépôt. Double-cliquez sur le répertoire training-data-analyst et assurez-vous que vous pouvez voir son contenu.
Cliquez sur Vérifier ma progression pour valider l'objectif.
Cloner un dépôt du cours dans votre interface JupyterLab
Tâche 3 : Entraînement distribué avec Keras
Dans l'interface du notebook, accédez à training-data-analyst > courses > machine_learning > deepdive2 > production_ml > labs et ouvrez keras.ipynb.
Dans la boîte de dialogue Select Kernel (Sélectionner le kernel), sélectionnez TensorFlow 2-11 (Local) dans la liste des kernels disponibles.
Dans l'interface du notebook, cliquez sur Modifier > Supprimer tous les éléments de sortie.
Lisez attentivement les instructions du notebook et complétez le code sur les lignes contenant la mention #TODO.
Conseil : Pour exécuter la cellule actuellement sélectionnée, cliquez dessus et appuyez sur MAJ+ENTRÉE. Vous trouverez les autres commandes de cellule dans l'interface du notebook, sous Exécuter.
Des conseils ont parfois été ajoutés pour vous aider à effectuer des tâches. Mettez le texte en surbrillance pour lire les conseils (texte en blanc).
Si vous avez besoin d'une aide supplémentaire, reportez-vous à la solution complète. Pour cela, accédez à training-data-analyst > courses > machine_learning > deepdive2 > production_ml > solutions et ouvrez keras.ipynb.
Terminer l'atelier
Une fois l'atelier terminé, cliquez sur End Lab (Terminer l'atelier). Qwiklabs supprime les ressources que vous avez utilisées, puis efface le compte.
Si vous le souhaitez, vous pouvez noter l'atelier. Sélectionnez le nombre d'étoiles correspondant à votre note, saisissez un commentaire, puis cliquez sur Submit (Envoyer).
Le nombre d'étoiles que vous pouvez attribuer à un atelier correspond à votre degré de satisfaction :
1 étoile = très mécontent(e)
2 étoiles = insatisfait(e)
3 étoiles = ni insatisfait(e), ni satisfait(e)
4 étoiles = satisfait(e)
5 étoiles = très satisfait(e)
Si vous ne souhaitez pas donner votre avis, vous pouvez fermer la boîte de dialogue.
Pour soumettre des commentaires, suggestions ou corrections, veuillez utiliser l'onglet Support (Assistance).
Copyright 2020 Google LLC Tous droits réservés. Google et le logo Google sont des marques de Google LLC. Tous les autres noms d'entreprises et de produits peuvent être des marques des entreprises auxquelles ils sont associés.
Les ateliers créent un projet Google Cloud et des ressources pour une durée déterminée.
Les ateliers doivent être effectués dans le délai imparti et ne peuvent pas être mis en pause. Si vous quittez l'atelier, vous devrez le recommencer depuis le début.
En haut à gauche de l'écran, cliquez sur Démarrer l'atelier pour commencer.
Utilisez la navigation privée
Copiez le nom d'utilisateur et le mot de passe fournis pour l'atelier
Cliquez sur Ouvrir la console en navigation privée
Connectez-vous à la console
Connectez-vous à l'aide des identifiants qui vous ont été attribués pour l'atelier. L'utilisation d'autres identifiants peut entraîner des erreurs ou des frais.
Acceptez les conditions d'utilisation et ignorez la page concernant les ressources de récupération des données.
Ne cliquez pas sur Terminer l'atelier, à moins que vous n'ayez terminé l'atelier ou que vous ne vouliez le recommencer, car cela effacera votre travail et supprimera le projet.
Ce contenu n'est pas disponible pour le moment
Nous vous préviendrons par e-mail lorsqu'il sera disponible
Parfait !
Nous vous contacterons par e-mail s'il devient disponible
Un atelier à la fois
Confirmez pour mettre fin à tous les ateliers existants et démarrer celui-ci
Utilisez la navigation privée pour effectuer l'atelier
Ouvrez une fenêtre de navigateur en mode navigation privée pour effectuer cet atelier. Vous éviterez ainsi les conflits entre votre compte personnel et le compte temporaire de participant, qui pourraient entraîner des frais supplémentaires facturés sur votre compte personnel.
L'API tf.distribute.Strategy fournit une abstraction permettant de distribuer votre entraînement sur plusieurs unités de traitement. L'objectif est de permettre aux utilisateurs de distribuer l'entraînement à l'aide de modèles existants et de code d'entraînement, avec le moins de modifications possible.
Durée :
0 min de configuration
·
Accessible pendant 120 min
·
Terminé après 120 min