关于“Classify Text into Categories with the Natural Language API”的评价
正在加载…
未找到任何结果。

在 Google Cloud 控制台中运用您的技能

关于“Classify Text into Categories with the Natural Language API”的评价

66498 条评价

brenno_ e. · 已于 over 1 year前审核

Vitalik G. · 已于 over 1 year前审核

Matheus s. · 已于 over 1 year前审核

Ігор М. · 已于 over 1 year前审核

Yurii D. · 已于 over 1 year前审核

Jessa Mae S. · 已于 over 1 year前审核

Task 6 python script is not formated

Vitaly U. · 已于 over 1 year前审核

Ihor K. · 已于 over 1 year前审核

Roman R. · 已于 over 1 year前审核

Iryna V. · 已于 over 1 year前审核

providnui p. · 已于 over 1 year前审核

Oleh T. · 已于 over 1 year前审核

very nice.

Arcanjo G. · 已于 over 1 year前审核

I think, you know, that the second part, related to classify-text.py does not work need to install pip install google.cloud for python pip install --user google-cloud-bigquery==2.34.4 "shapely<2" google-cloud-storage google-cloud-language fix errors in classify-text.py insert Project ID but thanks anyway for the interesting challenge

BuYn M. · 已于 over 1 year前审核

Kritika G. · 已于 over 1 year前审核

Camilo P. · 已于 over 1 year前审核

Deepnita M. · 已于 over 1 year前审核

Bad formatted bigquery python script with some errors not working Script must be like: ``` # Import necessary libraries from google.cloud import storage, language, bigquery # Set up your GCS, NL, and BigQuery clients storage_client = storage.Client() nl_client = language.LanguageServiceClient() bq_client = bigquery.Client(project='qwiklabs-gcp-01-b8b997bbdb2b') # Define dataset and table dataset_ref = bq_client.dataset('news_classification_dataset') dataset = bigquery.Dataset(dataset_ref) table_ref = dataset.table('article_data') table = bq_client.get_table(table_ref) # Function to classify the text def classify_text(article): response = nl_client.classify_text( document=language.Document( content=article, type_=language.Document.Type.PLAIN_TEXT ) ) return response rows_for_bq = [] files = storage_client.bucket('qwiklabs-test-bucket-gsp063').list_blobs() print("Got article files from GCS, sending them to the NL API (this will take ~2 minutes)...") # Send files to the NL API and save the result to send to BigQuery for file in files: if file.name.endswith('txt'): article_text = file.download_as_bytes() nl_response = classify_text(article_text) if len(nl_response.categories) > 0: rows_for_bq.append((str(article_text), nl_response.categories[0].name, nl_response.categories[0].confidence)) print("Writing NL API article data to BigQuery...") # Write article text + category data to BQ errors = bq_client.insert_rows(table, rows_for_bq) assert errors == [] ```

OLEG M. · 已于 over 1 year前审核

семен И. · 已于 over 1 year前审核

Nickolay K. · 已于 over 1 year前审核

Denys V. · 已于 over 1 year前审核

Volodymyr P. · 已于 over 1 year前审核

Дмитро М. · 已于 over 1 year前审核

Vinicius G. · 已于 over 1 year前审核

Данило Ч. · 已于 over 1 year前审核

我们无法确保发布的评价来自已购买或已使用产品的消费者。评价未经 Google 核实。