arrow_back

Call Gemini using the OpenAI Library

ログイン 参加
700 以上のラボとコースにアクセス

Call Gemini using the OpenAI Library

ラボ 1時間 universal_currency_alt クレジット: 5 show_chart 中級
info このラボでは、学習をサポートする AI ツールが組み込まれている場合があります。
700 以上のラボとコースにアクセス

GSP1266

Google Cloud self-paced labs logo

Overview

Developers already working with OpenAI's libraries can easily tap into the power of Gemini by leveraging the Gemini Chat Completions API. The Gemini Chat Completions API offers a streamlined way to experiment with and incorporate Gemini's capabilities into your existing AI applications. Learn more about calling Gemini by using the OpenAI library. In this lab, you learn how to call Gemini using the OpenAI library.

Gemini

Gemini is a family of powerful generative AI models developed by Google DeepMind, capable of understanding and generating various forms of content, including text, code, images, audio, and video.

Gemini API in Vertex AI

The Gemini API in Vertex AI provides a unified interface for interacting with Gemini models. This allows developers to easily integrate these powerful AI capabilities into their applications. For the most up-to-date details and specific features of the latest versions, please refer to the official Gemini documentation.

Gemini Models

  • Gemini Pro: Designed for complex reasoning, including:
    • Analyzing and summarizing large amounts of information.
    • Sophisticated cross-modal reasoning (across text, code, images, etc.).
    • Effective problem-solving with complex codebases.
  • Gemini Flash: Optimized for speed and efficiency, offering:
    • Sub-second response times and high throughput.
    • High quality at a lower cost for a wide range of tasks.
    • Enhanced multimodal capabilities, including improved spatial understanding, new output modalities (text, audio, images), and native tool use (Google Search, code execution, and third-party functions).

Prerequisites

Before starting this lab, you should be familiar with:

  • Basic Python programming.
  • General API concepts.
  • Running Python code in a Jupyter notebook on Vertex AI Workbench.

Objectives

In this lab, you will learn how to:

  • Configure OpenAI SDK for the Gemini Chat Completions API
  • Send a chat completions request
  • Stream chat completions response
  • Send a multimodal request
  • Send a function calling request
  • Send a function calling request with the tool_choice parameter

Setup and requirements

Before you click the Start Lab button

Read these instructions. Labs are timed and you cannot pause them. The timer, which starts when you click Start Lab, shows how long Google Cloud resources are made available to you.

This hands-on lab lets you do the lab activities in a real cloud environment, not in a simulation or demo environment. It does so by giving you new, temporary credentials you use to sign in and access Google Cloud for the duration of the lab.

To complete this lab, you need:

  • Access to a standard internet browser (Chrome browser recommended).
Note: Use an Incognito (recommended) or private browser window to run this lab. This prevents conflicts between your personal account and the student account, which may cause extra charges incurred to your personal account.
  • Time to complete the lab—remember, once you start, you cannot pause a lab.
Note: Use only the student account for this lab. If you use a different Google Cloud account, you may incur charges to that account.

How to start your lab and sign in to the Google Cloud console

  1. Click the Start Lab button. If you need to pay for the lab, a dialog opens for you to select your payment method. On the left is the Lab Details pane with the following:

    • The Open Google Cloud console button
    • Time remaining
    • The temporary credentials that you must use for this lab
    • Other information, if needed, to step through this lab
  2. Click Open Google Cloud console (or right-click and select Open Link in Incognito Window if you are running the Chrome browser).

    The lab spins up resources, and then opens another tab that shows the Sign in page.

    Tip: Arrange the tabs in separate windows, side-by-side.

    Note: If you see the Choose an account dialog, click Use Another Account.
  3. If necessary, copy the Username below and paste it into the Sign in dialog.

    {{{user_0.username | "Username"}}}

    You can also find the Username in the Lab Details pane.

  4. Click Next.

  5. Copy the Password below and paste it into the Welcome dialog.

    {{{user_0.password | "Password"}}}

    You can also find the Password in the Lab Details pane.

  6. Click Next.

    Important: You must use the credentials the lab provides you. Do not use your Google Cloud account credentials. Note: Using your own Google Cloud account for this lab may incur extra charges.
  7. Click through the subsequent pages:

    • Accept the terms and conditions.
    • Do not add recovery options or two-factor authentication (because this is a temporary account).
    • Do not sign up for free trials.

After a few moments, the Google Cloud console opens in this tab.

Note: To access Google Cloud products and services, click the Navigation menu or type the service or product name in the Search field. Navigation menu icon and Search field

Task 1. Open the notebook in Vertex AI Workbench

  1. In the Google Cloud console, on the Navigation menu (Navigation menu icon), click Vertex AI > Workbench.

  2. Find the instance and click on the Open JupyterLab button.

The JupyterLab interface for your Workbench instance opens in a new browser tab.

Note: If you do not see notebooks in JupyterLab, please follow these additional steps to reset the instance:

1. Close the browser tab for JupyterLab, and return to the Workbench home page.

2. Select the checkbox next to the instance name, and click Reset.

3. After the Open JupyterLab button is enabled again, wait one minute, and then click Open JupyterLab.

Task 2. Set up the notebook

  1. Open the file.

  2. In the Select Kernel dialog, choose Python 3 from the list of available kernels.

  3. Run through the Getting Started and the Import libraries sections of the notebook.

    • For Project ID, use , and for Location, use .
Note: You can skip any notebook cells that are noted Colab only. If you experience a 429 response from any of the notebook cell executions, wait 1 minute before running the cell again to proceed. Note: you can skip any notebook cells that are noted Colab only.

Click Check my progress to verify the objective. Import libraries and set up the notebook.

Task 3. Chat Completions API examples

In this section, you will experiment with the Chat Completions API by sending different chat completion requests and streaming the chat completions response.

  1. Run the Chat completion examples section of the notebook.

Click Check my progress to verify the objective. Send a chat completions request.

Click Check my progress to verify the objective. Stream chat completions response.

Click Check my progress to verify the objective. Send a multimodal request.

Click Check my progress to verify the objective. Send a function calling request with the 'tool_choice' parameter.

Congratulations!

Congratulations! In this lab, you learned how to configure the OpenAI SDK to use the Gemini Chat Completions API. You learned how to use the API to send a chat completions request and how to stream the response as the model generates it. You also learned how to send a multimodal request and how to use the API for function calling.

Next steps / learn more

Check out the following resources to learn more about Gemini:

Google Cloud training and certification

...helps you make the most of Google Cloud technologies. Our classes include technical skills and best practices to help you get up to speed quickly and continue your learning journey. We offer fundamental to advanced level training, with on-demand, live, and virtual options to suit your busy schedule. Certifications help you validate and prove your skill and expertise in Google Cloud technologies.

Manual Last Updated July 15, 2025

Lab Last Tested July 15, 2025

Copyright 2025 Google LLC. All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

始める前に

  1. ラボでは、Google Cloud プロジェクトとリソースを一定の時間利用します
  2. ラボには時間制限があり、一時停止機能はありません。ラボを終了した場合は、最初からやり直す必要があります。
  3. 画面左上の [ラボを開始] をクリックして開始します

シークレット ブラウジングを使用する

  1. ラボで使用するユーザー名パスワードをコピーします
  2. プライベート モードで [コンソールを開く] をクリックします

コンソールにログインする

    ラボの認証情報を使用して
  1. ログインします。他の認証情報を使用すると、エラーが発生したり、料金が発生したりする可能性があります。
  2. 利用規約に同意し、再設定用のリソースページをスキップします
  3. ラボを終了する場合や最初からやり直す場合を除き、[ラボを終了] はクリックしないでください。クリックすると、作業内容がクリアされ、プロジェクトが削除されます

このコンテンツは現在ご利用いただけません

利用可能になりましたら、メールでお知らせいたします

ありがとうございます。

利用可能になりましたら、メールでご連絡いたします

1 回に 1 つのラボ

既存のラボをすべて終了して、このラボを開始することを確認してください

シークレット ブラウジングを使用してラボを実行する

このラボの実行には、シークレット モードまたはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウントの競合を防ぎ、個人アカウントに追加料金が発生することを防ぎます。