読み込んでいます...
一致する結果は見つかりませんでした。

Google Cloud コンソールでスキルを試す

Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版

700 以上のラボとコースにアクセス

Vertex AI 2.5 の JupyterLab で BigQuery を利用する

ラボ 1時間 15分 universal_currency_alt クレジット: 5 show_chart 入門
info このラボでは、学習をサポートする AI ツールが組み込まれている場合があります。
700 以上のラボとコースにアクセス

概要

このラボでは、Google Cloud Platform の Vertex AI サービスで実行される Jupyter ノートブックをインスタンス化する方法について学習します。デモを進めるうえで、さまざまなフライト発着時間が含まれたデータセットを活用します。

目標

このラボでは、次のタスクの実行方法について学びます。

  • Vertex AI で Jupyter ノートブックをインスタンス化する。
  • Jupyter ノートブック内で BigQuery クエリを実行し、Pandas を使用して出力を処理する。

環境を設定する

各ラボでは、新しい Google Cloud プロジェクトとリソースセットを一定時間無料で利用できます。

  1. Qwiklabs にシークレット ウィンドウでログインします。

  2. ラボのアクセス時間(例: 1:15:00)に注意し、時間内に完了できるようにしてください。
    一時停止機能はありません。必要な場合はやり直せますが、最初からになります。

  3. 準備ができたら、[ラボを開始] をクリックします。

  4. ラボの認証情報(ユーザー名パスワード)をメモしておきます。この情報は、Google Cloud Console にログインする際に使用します。

  5. [Google Console を開く] をクリックします。

  6. [別のアカウントを使用] をクリックし、このラボの認証情報をコピーしてプロンプトに貼り付けます。
    他の認証情報を使用すると、エラーが発生したり、料金の請求が発生したりします。

  7. 利用規約に同意し、再設定用のリソースページをスキップします。

BigQuery コンソールを開く

  1. Google Cloud Console で、ナビゲーション メニュー > [BigQuery] を選択します。

[Cloud Console の BigQuery へようこそ] メッセージ ボックスが開きます。このメッセージ ボックスにはクイックスタート ガイドへのリンクと、UI の更新情報が表示されます。

  1. [完了] をクリックします。

タスク 1. Vertex AI Workbench のインスタンスを起動する

  1. Google Cloud コンソールのナビゲーション メニューナビゲーション メニュー)で [Vertex AI] を選択します。

  2. [すべての推奨 API を有効化] をクリックします。

  3. ナビゲーション メニューで [ワークベンチ] をクリックします。

    [ワークベンチ] ページの上部で、[インスタンス] ビューになっていることを確認します。

  4. [ボックスを追加する新規作成] をクリックします。

  5. インスタンスの構成:

    • 名前: lab-workbench
    • リージョン: リージョンを に設定します
    • ゾーン: ゾーンを に設定します
    • 詳細オプション(任意): 必要に応じて [詳細オプション] をクリックして、より詳細なカスタマイズを行います(マシンタイプ、ディスクサイズなど)。

Vertex AI Workbench インスタンスを作成する

  1. [作成] をクリックします。

インスタンスが作成されるまで数分かかります。作成が終了するとインスタンスの名前の横に緑色のチェックマークが付きます。

  1. インスタンスの名前の横に表示されている [JupyterLab を開く] をクリックして JupyterLab インターフェースを起動します。ブラウザで新しいタブが開きます。

デプロイされたワークベンチ インスタンス

  1. [Python 3] アイコンをクリックして、新規の Python ノートブックを起動します。

Jupyter ノートブックを開く

  1. メニューバーでファイル Untitled.ipynb を右クリックし、[ノートブック名を変更] を選択して、わかりやすい名前を付けます。

ノートブックの名前を変更する

これで環境が設定されました。これで Vertex AI Workbench ノートブックを使い始める準備ができました。

使用できるようになった Vertex ノートブック

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 Vertex AI Workbench のインスタンスを起動する

タスク 2. BigQuery クエリを実行する

  1. ノートブックの最初のセルに、次のクエリを入力します。
%%bigquery df --use_rest_api SELECT depdelay as departure_delay, COUNT(1) AS num_flights, APPROX_QUANTILES(arrdelay, 10) AS arrival_delay_deciles FROM `cloud-training-demos.airline_ontime_data.flights` WHERE depdelay is not null GROUP BY depdelay HAVING num_flights > 100 ORDER BY depdelay ASC

このコマンドでは、マジック関数 %%bigquery を使用しています。ノートブックのマジック関数は、システム コマンドのエイリアスを提供します。ここで %%bigquery は セル内のクエリを BigQuery で実行し、その出力を df という名前の Pandas DataFrame オブジェクトに格納しています。

  1. セルにカーソルを移動し、Shift+Enter キーを押してセルを実行します。または、[Run] タブの [Run Selected Cells] をクリックします。このアクションのキーボード ショートカットが Shift+Enter キーではない場合は、コマンドを実行しても出力は表示されません。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 BigQuery クエリを実行する

  1. 新しいセルで次のコードを実行して、クエリ出力の最初の 5 行を確認します。
df.head()

df.head クエリから出力されたテーブル。departure_delay、num_flights、arival_delay_deciles の列見出しの下に 4 行のデータが表示されている。

Pandas を使用してプロットを作成する

クエリ出力が含まれる Pandas DataFrame を使用して、到着遅延が出発遅延にどのように関連しているかを示すプロットを作成します。Pandas に慣れていない場合は、続行する前に Ten Minute Getting Started Guide をご確認ください。

  1. データが含まれる DataFrame を取得するには、まず未加工のクエリ出力を入手する必要があります。新しいセルに次のコードを入力して、arrival_delay_deciles のリストを Pandas の Series オブジェクトに変換します。コードを使用して、結果の列の名前を変更することもできます。
import pandas as pd percentiles = df['arrival_delay_deciles'].apply(pd.Series) percentiles.rename(columns = lambda x : '{0}%'.format(x*10), inplace=True) percentiles.head()
  1. 出発遅延時間と到着遅延時間を関連付けるため、percentiles テーブルを元の DataFrame の departure_delay フィールドに連結する必要があります。新しいセルで次のコードを実行します。
df = pd.concat([df['departure_delay'], percentiles], axis=1) df.head()
  1. DataFrame の内容をプロットする前に、0%100% のフィールドに格納されている極端な値を削除します。新しいセルで次のコードを実行します。
df.drop(labels=['0%', '100%'], axis=1, inplace=True) df.plot(x='departure_delay', xlim=(-30,50), ylim=(-50,50));

折れ線グラフ形式の departure_delay クエリの出力

ラボを終了する

ラボが完了したら、[ラボを終了] をクリックします。ラボで使用したリソースが Google Cloud Skills Boost から削除され、アカウントの情報も消去されます。

ラボの評価を求めるダイアログが表示されたら、星の数を選択してコメントを入力し、[送信] をクリックします。

星の数は、それぞれ次の評価を表します。

  • 星 1 つ = 非常に不満
  • 星 2 つ = 不満
  • 星 3 つ = どちらともいえない
  • 星 4 つ = 満足
  • 星 5 つ = 非常に満足

フィードバックを送信しない場合は、ダイアログ ボックスを閉じてください。

フィードバックやご提案の送信、修正が必要な箇所をご報告いただく際は、[サポート] タブをご利用ください。

Copyright 2020 Google LLC All rights reserved. Google および Google のロゴは Google LLC の商標です。その他すべての企業名および商品名はそれぞれ各社の商標または登録商標です。

前へ 次へ

始める前に

  1. ラボでは、Google Cloud プロジェクトとリソースを一定の時間利用します
  2. ラボには時間制限があり、一時停止機能はありません。ラボを終了した場合は、最初からやり直す必要があります。
  3. 画面左上の [ラボを開始] をクリックして開始します

シークレット ブラウジングを使用する

  1. ラボで使用するユーザー名パスワードをコピーします
  2. プライベート モードで [コンソールを開く] をクリックします

コンソールにログインする

    ラボの認証情報を使用して
  1. ログインします。他の認証情報を使用すると、エラーが発生したり、料金が発生したりする可能性があります。
  2. 利用規約に同意し、再設定用のリソースページをスキップします
  3. ラボを終了する場合や最初からやり直す場合を除き、[ラボを終了] はクリックしないでください。クリックすると、作業内容がクリアされ、プロジェクトが削除されます

このコンテンツは現在ご利用いただけません

利用可能になりましたら、メールでお知らせいたします

ありがとうございます。

利用可能になりましたら、メールでご連絡いたします

1 回に 1 つのラボ

既存のラボをすべて終了して、このラボを開始することを確認してください

シークレット ブラウジングを使用してラボを実行する

このラボの実行には、シークレット モードまたはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウントの競合を防ぎ、個人アカウントに追加料金が発生することを防ぎます。
プレビュー