正在加载…
未找到任何结果。

在 Google Cloud 控制台中运用您的技能

Serverless Data Processing with Dataflow: Foundations

访问 700 多个实验和课程

Setup IAM and Networking for your Dataflow Jobs

实验 1 小时 15 分钟 universal_currency_alt 5 积分 show_chart 入门级
info 此实验可能会提供 AI 工具来支持您学习。
访问 700 多个实验和课程

Overview

In this lab, you will learn to set up IAM permissions and use private IP addresses for your Datafow jobs.

Objectives

  • Use IAM permissions that affect whether a job can be launched.
  • Use Private IP addresses for your Dataflow jobs.

Setup and requirements

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Activate Cloud Shell

Cloud Shell is a virtual machine that contains development tools. It offers a persistent 5-GB home directory and runs on Google Cloud. Cloud Shell provides command-line access to your Google Cloud resources. gcloud is the command-line tool for Google Cloud. It comes pre-installed on Cloud Shell and supports tab completion.

  1. Click the Activate Cloud Shell button (Activate Cloud Shell icon) at the top right of the console.

  2. Click Continue.
    It takes a few moments to provision and connect to the environment. When you are connected, you are also authenticated, and the project is set to your PROJECT_ID.

Sample commands

  • List the active account name:
gcloud auth list

(Output)

Credentialed accounts: - <myaccount>@<mydomain>.com (active)

(Example output)

Credentialed accounts: - google1623327_student@qwiklabs.net
  • List the project ID:
gcloud config list project

(Output)

[core] project = <project_ID>

(Example output)

[core] project = qwiklabs-gcp-44776a13dea667a6 Note: Full documentation of gcloud is available in the gcloud CLI overview guide.

Task 1. Create a Cloud Storage bucket

  1. In Cloud Shell, to set up your variables, run the following command:

    PROJECT=`gcloud config list --format 'value(core.project)'` USER_EMAIL=`gcloud config list account --format "value(core.account)"` REGION={{{ project_0.default_region | "REGION" }}}
  2. Create a Cloud Storage bucket:

    gcloud storage buckets create gs://$PROJECT --project=$PROJECT

Click Check my progress to verify the objective. Create a Cloud Storage bucket.

Task 2. Launch a Dataflow job

In this task, you try to run a Dataflow job. It will initially fail because of the lack of IAM permissions. After you assign the required role, the job runs successfully.

  1. Firstly, verify the IAM roles associated with the account:

    gcloud projects get-iam-policy $PROJECT \ --format='table(bindings.role)' \ --flatten="bindings[].members" \ --filter="bindings.members:$USER_EMAIL"
  2. Attempt to launch a Dataflow job:

    gcloud dataflow jobs run job1 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs

This will fail as expected because of missing IAM permissions.

  1. Add the Dataflow Admin role to the user account:
gcloud projects add-iam-policy-binding $PROJECT --member=user:$USER_EMAIL --role=roles/dataflow.admin
  1. Launch the Dataflow job again:

    gcloud dataflow jobs run job1 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs
  2. On the Google Cloud console title bar, type Dataflow in the Search field, then click Dataflow in the Products & Pages section.

Please wait for about 5 minutes for your job to complete before you proceed.

Click Check my progress to verify the objective. Launch a Dataflow job.

Task 3. Launch in private IPs

In this task, you first try to launch a Dataflow job with the --disable-public-ips directive. It will fail in the first attempt because the network does not have Private Google Access (PGA) turned on. You configure PGA and re-run the command to launch the job.

  1. In Cloud Shell, to launch a Dataflow job using the --disable-public-ips directive, run the following command: gcloud dataflow jobs run job2 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs --disable-public-ips

This job will fail as expected because PGA is not turned on.

  1. To verify, go to the Google Cloud console, on the Navigation menu, click Dataflow > Jobs, and notice that job2 failed.

  2. Click on job2, then scroll to the bottom to click on "SHOW" next to Logs to see the cause of error.

  3. In Cloud Shell, run the following commands to give the user the required role to enable PGA, and then enable PGA:

gcloud projects add-iam-policy-binding $PROJECT --member=user:$USER_EMAIL --role=roles/compute.networkAdmin gcloud compute networks subnets update default \ --region=$REGION \ --enable-private-ip-google-access
  1. Repeat step 1:

    gcloud dataflow jobs run job2 \ --gcs-location gs://dataflow-templates-{{{ project_0.default_region | "REGION" }}}/latest/Word_Count \ --region $REGION \ --staging-location gs://$PROJECT/tmp \ --parameters inputFile=gs://dataflow-samples/shakespeare/kinglear.txt,output=gs://$PROJECT/results/outputs --disable-public-ips
  2. In the Google Cloud console, on the Navigation menu, click Compute Engine > VM Instances, and notice that the VM launched has no external IP address.

Note: The VM instance will be deleted once the job status will change to succeeded.

Click Check my progress to verify the objective. Launch in Private IPs.

Congratulations!

This concludes the lab. In the lab, you used the correct IAM roles to launch a Dataflow job. Next, you changed the subnet to Private Google Access and launched the VMs that do not use an external IP address as part of your Dataflow job.

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

上一步 下一步

准备工作

  1. 实验会创建一个 Google Cloud 项目和一些资源,供您使用限定的一段时间
  2. 实验有时间限制,并且没有暂停功能。如果您中途结束实验,则必须重新开始。
  3. 在屏幕左上角,点击开始实验即可开始

使用无痕浏览模式

  1. 复制系统为实验提供的用户名密码
  2. 在无痕浏览模式下,点击打开控制台

登录控制台

  1. 使用您的实验凭证登录。使用其他凭证可能会导致错误或产生费用。
  2. 接受条款,并跳过恢复资源页面
  3. 除非您已完成此实验或想要重新开始,否则请勿点击结束实验,因为点击后系统会清除您的工作并移除该项目

此内容目前不可用

一旦可用,我们会通过电子邮件告知您

太好了!

一旦可用,我们会通过电子邮件告知您

一次一个实验

确认结束所有现有实验并开始此实验

使用无痕浏览模式运行实验

请使用无痕模式或无痕式浏览器窗口运行此实验。这可以避免您的个人账号与学生账号之间发生冲突,这种冲突可能导致您的个人账号产生额外费用。
预览