In this lab you train, evaluate, and deploy a machine learning model to predict a baby's weight.
What you learn
In this lab, you:
Launch Vertex AI Workbench instance
Create a BigQuery Dataset and GCS Bucket
Export from BigQuery to CSVs in GCS
Training on Cloud AI Platform
Deploy trained model
Setup your lab
Start your lab
For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.
Sign in to Qwiklabs using an incognito window.
Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
There is no pause feature. You can restart if needed, but you have to start at the beginning.
When ready, click Start lab.
Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.
Click Open Google Console.
Click Use another account and copy/paste credentials for this lab into the prompts.
If you use other credentials, you'll receive errors or incur charges.
Accept the terms and skip the recovery resource page.
Enable the AI Platform Training & Prediction API
In the API library, Search for "AI Platform Training & Prediction API" and click the AI Platform Training & Prediction API card.
Click Enable to activate the API. If you see Manage, the API is already activated.
Task 1. Create storage bucket
In the Google Cloud Console, on the Navigation menu (), click Cloud Storage > Buckets.
Click + Create.
Type a unique name for your bucket, such as your project ID.
Click Create.
Confirm Enforce public access prevention on this bucket on "Public access will be prevented" pop-up.
Task 2. Launch Vertex AI Workbench instance
In the Google Cloud console, from the Navigation menu (), select Vertex AI > Dashboard.
Click Enable All Recommended APIs.
In the Navigation menu, click Workbench.
At the top of the Workbench page, ensure you are in the Instances view.
Click Create New.
Configure the Instance:
Name: lab-workbench
Region: Set the region to
Zone: Set the zone to
Advanced Options (Optional): If needed, click "Advanced Options" for further customization (e.g., machine type, disk size).
Click Create.
This will take a few minutes to create the instance. A green checkmark will appear next to its name when it's ready.
Click Open Jupyterlab next to the instance name to launch the JupyterLab interface. This will open a new tab in your browser.
Click the Python 3 icon to launch a new Python notebook.
Right-click on the Untitled.ipynb file in the menu bar and select Rename Notebook to give it a meaningful name.
Your environment is set up. You are now ready to start working with your Vertex AI Workbench notebook.
Click Check my progress to verify the objective.
Launch Vertex AI Workbench instance
Task 3. Clone course repo within your Vertex AI Workbench instance
The GitHub repo contains both the lab file and solutions files for the course.
Copy and run the following code in the first cell of your notebook to clone the training-data-analyst repository.
Confirm that you have cloned the repository. Double-click on the training-data-analyst directory and ensure that you can see its contents.
Click Check my progress to verify the objective.
Clone course repo within your Vertex AI Workbench instance
Task 4. Structured data prediction using Vertex AI Platform
In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive2 > production_ml > babyweight, and open train_deploy.ipynb.
In the Select Kernel dialog, choose Python 3 from the list of available kernels.
From the menu, click Edit > Clear All Outputs.
Read the narrative and click Shift + Enter (or Run) on each cell in the notebook.
Task 5. Test your knowledge
Test your knowledge about Google cloud Platform by taking our quiz.
Congratulations!
You learned how to train, evaluate, and deploy a machine learning model in Vertex AI notebooks.
End your lab
When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.
You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.
The number of stars indicates the following:
1 star = Very dissatisfied
2 stars = Dissatisfied
3 stars = Neutral
4 stars = Satisfied
5 stars = Very satisfied
You can close the dialog box if you don't want to provide feedback.
For feedback, suggestions, or corrections, please use the Support tab.
Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
Labs erstellen ein Google Cloud-Projekt und Ressourcen für einen bestimmten Zeitraum
Labs haben ein Zeitlimit und keine Pausenfunktion. Wenn Sie das Lab beenden, müssen Sie von vorne beginnen.
Klicken Sie links oben auf dem Bildschirm auf Lab starten, um zu beginnen
Privates Surfen verwenden
Kopieren Sie den bereitgestellten Nutzernamen und das Passwort für das Lab
Klicken Sie im privaten Modus auf Konsole öffnen
In der Konsole anmelden
Melden Sie sich mit Ihren Lab-Anmeldedaten an. Wenn Sie andere Anmeldedaten verwenden, kann dies zu Fehlern führen oder es fallen Kosten an.
Akzeptieren Sie die Nutzungsbedingungen und überspringen Sie die Seite zur Wiederherstellung der Ressourcen
Klicken Sie erst auf Lab beenden, wenn Sie das Lab abgeschlossen haben oder es neu starten möchten. Andernfalls werden Ihre bisherige Arbeit und das Projekt gelöscht.
Diese Inhalte sind derzeit nicht verfügbar
Bei Verfügbarkeit des Labs benachrichtigen wir Sie per E-Mail
Sehr gut!
Bei Verfügbarkeit kontaktieren wir Sie per E-Mail
Es ist immer nur ein Lab möglich
Bestätigen Sie, dass Sie alle vorhandenen Labs beenden und dieses Lab starten möchten
Privates Surfen für das Lab verwenden
Nutzen Sie den privaten oder Inkognitomodus, um dieses Lab durchzuführen. So wird verhindert, dass es zu Konflikten zwischen Ihrem persönlichen Konto und dem Teilnehmerkonto kommt und zusätzliche Gebühren für Ihr persönliches Konto erhoben werden.
In this lab you train, evaluate, and deploy a machine learning model to predict a baby’s weight. You then send requests to the model to make online predictions. This lab is part of a series of labs on processing scientific data.